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Chapter 1
Individual Decision Making

Individual decision-making forms the basis for nearly all of microeconomic
analysis. These notes outline the “standard” economic model of rational
choice in decision-making. In the standard view, rational choice is defined to
mean the process of determining what options are available and then choosing

the one that is most preferred.

QUESTION: What do we mean by preferred?

1.1 Preferences

Rational choice theory starts with the idea that individuals have preferences
and choose according to those. Our first task is to formalize what that
means and precisely what it implies about the pattern of decisions we should

observe.

Let X be a set of possible choices. In consumer choice models, one might
specify that X C R", meaning for instance that there are n different goods

(tacos, tortilla chips, salsa, etc..) and if z € X, then z = (4, ..., ,,) specifies
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CHAPTER 1. INDIVIDUAL DECISION MAKING

quantities of each type of good. In general, the abstractness of the choice set

X allows enormous flexibility in adapting the model to various applications.

Now consider an economic agent. We summarize the agent’s preferences over
the set X in a preference relation which we denote by 7-. Specifically we use
>~ to denote the agent’s weak preference and we read x 77 y as “x is at least as
good as y”. From this, we can give two other definitions, the strict preference

relation and the indifferent preference relation:

DEFINITION: Strict Preference Relation x> y iff x 7~ y but not
y .

We read = > y as x is strictly preferred to y or we say that the agent strictly

prefers x to y.

DEFINITION: Indifferent Preference Relation x ~ y iff x 72 y and
Y 7.

We read = ~ y as “x is indifferent to y” or we say that the agent is indifferent

between x and y.

1.2 Rational Choice

Now lets go back to our definition of rational choice. We now have a better
understanding of the word preferred and this helps us to refine our definition

of the term rational.



1.2. RATIONAL CHOICE

DEFINITION: Rational A preference relation - is rational if it possess

the following two properties:

1. Completeness

2. Transitivity

Completeness means that if an agent is given a choice between two options,
she will have an opinion as to which she likes more. She may be indifferent,

but she is never completely clueless.

DEFINITION: Completeness A preference relation 7~ on X is complete
if Vo,y € X either x 2~ y or y 77 z, or both.

Because this definition does not excludes the possibility that y = x, com-

pleteness implies that x 77 .

Transitivity means that if an agent prefers (meaning weakly prefers) option
1 to option 2 and also prefers option 2 to option 3, then she will prefer option

1 to option 3.

DEFINITION: Transitivity A preference relation 27 on X is transitive
ifVo,y,z€ Xifz >~ yand y =~ 2z, then = 7 2.

Transitivity also means that an agent’s weak preferences can cycle only
among choices that are indifferent. That is, if she weakly prefers A to B,
B to C, and C to A, then she must be indifferent among all three: A~B~C.

The word rational lends a sense of credibility, but remember that rational
choice is an assumption. An economist using the standard framework as-
sumes that an individual’s preference relation is rational. There are many
real-life examples of violations of transitivity. The following example is due
to Kahneman and Tversky (1984).

Rational

Completeness

Transitivity



CHAPTER 1. INDIVIDUAL DECISION MAKING

ExXAMPLE: Imagine that you are about to purchase a stereo for
$125 dollars and a calculator for $15. The salesman tells you that
the calculator is on sale for 5 dollars less at the other branch of
the store, located 20 minutes away. The stereo is the same price

there. Would you make the trip to the other store?

The fraction of people saying that they would travel to the other
store for the $5 discount is much higher when the calculator is
discounted than when the question is changed so that the $5
discount applies to the stereo instead. This is so even though the
ultimate saving obtained by incurring the inconvenience of travel
is the same in both cases. In fact, if asked the following question,

we would expect people to respond with indifference:

Both the calculator and the stereo are out of stock, so you must
travel to the other store (located 20 minutes away). At the other
store, you will receive a $5 discount coupon as compensation. Do

you care on which item we apply this 5 dollar rebate?

However, responding to this question with indifference exposes
an intransitivity. Let z be traveling to the other store to get a
calculator discount, let y be traveling to get a stereo discount,
and let zbe staying at the first store. That a high fraction of
people respond that they would go to the other store for the
calculator discount means that = > 2. That a low fraction of
people respond that they would go to the other store for the
stereo discount means that z > y. However, answering the above
question with indifference means that x ~ y, a clear violation of

transitivity.



1.3. CHOICE STRUCTURE

1.3 Choice Structure

Given preferences, how will an economic agent behave? We assume that given
a set of choices B C X, the agent will choose the element of B she prefers

most. To formalize this, we define the agent’s choice structure (95,C (.)).

e B is a set of nonempty subsets of X; that is, every element of 8 is a
set B € X. We call the elements B € B budget sets.

e C'(.)is a choice rule (actually, it’s a correspondence) that assigns a set
of chosen elements of B. Formally, C(B; ) ={r € B |z 7y Vy € B}.
The choice rule gives the set of items in B that the agent likes as much

as any of the other alternatives.

There are several things to note about C (B; 7).

e C (B; ) may contain more than one element.

e If B is finite, then C (B; ) is non-empty (we will prove this in propo-

sition 1).

e If B is infinite, then C (B;7;) might be empty. To see why, suppose
B ={xz |z €]0,1)}. If the agent feels that more is better (so x = y if
x >y), then C(B; ) = 0.

An example of how we use this choice structure may help.

EXAMPLE: Suppose that X = {z, y, z} and B = {{z, y}, {z, y, 2} }.
One possible choice structure is (8, C} (.)), where the choice rule
Ci ({2, y},Z) = {«} and C1 ({z, y, 2}, Z) = {«}. In this case,

x 1s chosen no matter which decision the individual faces.

7
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CHAPTER 1. INDIVIDUAL DECISION MAKING

If an agent’s preferences are complete and transitive, then her choice rule

will not be completely arbitrary, as the following result shows.

PROPOSITION 1: Suppose -, is complete and transitive. Then,

1. for every finite non-empty set B, C (B; ) # () and

2. for A, Be®Bifz,ye€ ANB, andx € C(A; ) andy € C(B; ),
then x € C (B;7) andy € C (A;70)

PROOF: For (1), we proceed by mathematical induction on the number of
elements of B. First, suppose the number of elements is one, so B = {z}.
By completeness, z =~ x, so z € C(B;7). Hence, for all sets B with just
one element, C'(B; ) # @. Next, fix n > 1 and suppose that for all sets B
with exactly n elements, C(B;>) # @. Let A be a set with exactly n + 1
elements and let + € A. Then, there is a set B with exactly n elements
such that A = B U {z}. By the induction hypothesis, C(B; ) # &, so let
y € C(B; ). If y 77 x, then by definition y € C(A, ), so C(A, ) # @. By
completeness, the only other possibility is that z =~ y. In that case, for all
2z € B, x 77y 7 z, so transitivity implies that x 77 z. Since x 77 z, it follows
that © € C(A; ) and hence that C'(A, ) # &. Hence, for every set A with
exactly n + 1 elements, C'(A,”) # @. By the principle of mathematical
induction, it follows that for every finite set A with any number of elements,
C(A, ) # @, which proves (1) O

ProoF: For (2), if z,y € A, and © € C(A; ), then = 77 y. The condition
y € C(B; ) means that for all z € B, y »= z. Then, by transitivity, for all
z € B, x 7 z. From that and x € B, we conclude that z € C(B; ). A
symmetric argument implies that y € C'(A; ). O

Q.E.D.



Chapter 2
Choice and Revealed Preferences

While economic theories tend to begin by making assumptions about people’s
preferences and then asking what will happen, it is interesting to turn this
process around. Indeed, much empirical work reasons in the reverse way: it
looks at people’s choices (e.g. how much money they’ve saved, what car they
bought), and tries to "rationalize" those choices, that is, figure out whether
the choices are compatible with optimization and, if so, what the choices

imply about the agent’s preferences.
What are the implications of optimization?

QUESTION: Can we always rationalize choices as being the result of pref-
erence maximization? Or does the model of preference maximization have

testable restrictions that can be violated by observed choices?

2.1 Choice Rule

In the preceding chapter, we derived a choice rule from a given preference

relation, writing C'(B; ) to emphasize the derivation. In empirical data,

9
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CHAPTER 2. CHOICE AND REVEALED PREFERENCES

however, the evidence comes in the form of choices, so it is helpful to make

the choice rule the primitive object of our theory.

DEFINITION: Choice Rule A choice rule is a function C' : 9B — B
with the property that VB € 9B, C' (B) C B.

QUESTION: How can we learn an agent’s choice rule?

In principle, we can learn an agent’s choice rule by watching her in action,
however, we have to see her choose from all subsets of X. Suppose we are
able to learn an agent’s choice rule. Can we tell if her choice behavior is

consistent with her maximizing some underlying preferences?

HARP DEFINITION: HARP A choice function C' : 8 — ‘B satisfies
Houthaker’s Axiom of Revealed Preference if, whenever z,y € AN B, and
x € C(A), and y € C(B), then z € C(B) and y € C(A).

PROPOSITION 2: Suppose C' : B — B is non-empty. Then
3 a complete and transitive preference relation 7Zon X such that
C(.)=C(;7) iff C satisfies HARP.

Y~

That is, C' could be the result of an agent maximizing complete and transitive

(rational) preferences if and only if C satisfies HARP.

PRroOF: First, suppose that C(-) = C(+; ) is the result of an agent max-

imizing complete transitive preferences. From the Proposition 1, we know
that C' must satisfy HARP.

Conversely, suppose C' satisfies HARP. Define the “revealed preference relation”-,.
as follows: if for some A C X, y € A and z € C(A), then say that z . y.
We need to show three things, namely, that

~. is complete and transitive
and that C(-) = C(+; ).

10



2.1. CHOICE RULE

1. For completeness, pick any x,y € X. Because C' is non-empty, then
either C'({z,y}) = {x} in which case = 7. y, or C({z,y}) = {y} in
which case y 7. z, or C({z,y}) = {x,y} in which case x . y and

~vC

Y e T

2. For transitivity, suppose = 7-. y and y . z, and consider C({z,y, z}),
which by hypothesis is non-empty. If y € C({z,y, z}), then by HARP,
x € C{x,y,z}). If z € C({x,y, 2}), then by HARP, y € C({z,y, z}).
So, in every possibility, z € C({z,y, z}). Hence, = is transitive.

) ~C

3. If x € C(A) and y € A, then by the definition of 7., z . y. So,
x € C(A;7.). This implies that C(A) CC(A;*>.). Also, since C(A) is

) ~vC

non-empty, there is some y € C(A). If x € C(A;7.), then z =,y , so

) ~C

by HARP, = € C(A) . This implies that C'(A; =) C C(A). O

) ~C

Q.E.D.

A problems with Proposition 2 is that it assumes that we observe the entire
choice function C(.). Real data is almost never this comprehensive. Typi-
cally, if we are trying to test the preference-based model of choice, we will

observe less than all of C' in two respects:

1. For sets B C X where C'(B) contains more than one element, we are

likely to see only one element of C'(B).

2. We will typically see C'(B) for some, but not all subsets B C X. For
example, in consumer choice problems, the relevant sets B may be only

the budget sets, which is a particular sub-collection of the possible sets
B.

To develop a theory based on more limited observations, economists have

developed the weak aziom of revealed preference.

WARP says that if = is every chosen when y is available, then there can be

no budget set containing both alternatives for which y is chosen and z is not.

11
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CHAPTER 2. CHOICE AND REVEALED PREFERENCES

Definition: WARP The choice structure (B,C (.)) satisfies the weak
axiom of revealed preference if the following property holds:

o If for some B € B with z,y € B we have © € C(B), then for any
A € B with x,y € Aand y € C(A), then we must also have = € C(A).

Example: Suppose that X = {I‘, Y, Z}’ B = {{I, y} ) {y7 Z}> {I, Z}}a
C({z, y}) ={z}, C{y, 2}) = {y}, C({z, z}) = {z}. This choice
structure satisfies the weak axiom. nevertheless, we cannot have
rationalizing preferences because transitivity would be violated.

Therefore, there can be no rationalizing preference relation.

QUESTION: What condition would we need in addition to the weak axiom
being satisfied for there to be a rational preference relation > that rationalizes
C'(.) relative to B; that is C(B) = C(B, ) VB € B?

ANSWER: ‘B includes all subsets of X of up to three elements.

For additional material on WARP, see section 1.D of MWG.

12



Chapter 3
Utility

So far, we have a pretty abstract model of choice. As a step toward having a
more tractable mathematical formulation of decision-making, we now intro-
duce the idea of utility, which assigns a numerical ranking to each possible
choice. For example, if there are n choices ranked in order from first to last,
we may assign the worst choice(s) a utility of 0, the next worst a utility of
1, and so on. Picking the most preferred choice then amounts to picking the
choice with the greatest utility. In this chapter, we will examine the classical,

preference-based approach to utility functions.

Definition: Utility Function A preference relation —on X is
represented by a utility function v : X — R if z = y < u(x) > u(y).

That is, a utility function assigns a number to each element in X. A utility
function u represents a preference relation > if the numerical ranking v gives

to elements in X coincides with the preference ranking given by 7.

Having a utility representation for preferences is convenient because it turns

the problem of preference maximization into a relatively familiar math prob-

13
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CHAPTER 3. UTILITY
lem. If u represents 77, then

C(B;x) = {:)3 | x solves meaécu(a:)} :

A natural question is whether given a preference relation ~~, we can always

~?

find a function u to represent 7.

Proposition 3: If X is finite, then any complete and transitive
preference relation —on X can be represented by a utility

function u : X — R.

Proof. The proof is by induction on the size of the set. We prove that the
representation can be done for a set of size n such that the range {u(x)|x €
X} CA{l,....,n}. Webegin withn = 0. If X = &, then {u(x)|z € X} = &, so
the conclusion is trivial. Next, suppose that preferences can be represented
as described for any set with at most n elements. Consider a set X with
n + 1 elements. Since C(X,7) # &, the set X — C(X, ) has no more
than n elements, so preferences restricted to that set can be represented by
a utility function uwhose range is {1,...,n}. We extend the domain of u to
X by setting u(x) = n + 1 for each z € C(X, 7). Next, we show that this u

represents .

Given any x,y € X, suppose that x =~ y. If z € C(X,7), then u(z) =
n+1>uly). If x ¢ C(X,7), then by transitivity of -, it must also be

true that y ¢ C(X,7), so z,y € X — C(X,7;). Then, by construction,
n+1>u(z) > u(y) > 1.

For the converse, suppose it is not true that z 2~ y. Then, y > z, and a
symmetric argument to the one in the preceding paragraph establishes that
n+1>u(y) > u(xr) > 1. Hence, z 77 y if and only if u(z) > u(y), so u
represents 7. [J Q.E.D.

14



3.1. INTERPERSONAL COMPARISONS

If X is infinite, things are a bit more complicated. In general, not every
complete, transitive preference relation will be representable by a real-valued
utility function. For example, consider the lexicographic preferences accord-

ing to which = > y whenever either

1. z1 >y or

2. x1 =1y, and x5 > ys.

In words, as long as the first component of x is larger than that of y, x is
preferred to y, regardless of the values of the second components of x and
y. If the first component s become equal, only the second components are
relevant. The name lexicographic is derived from the way a dictionary is

organized.

These preferences cannot be represented by a real-valued utility function.
The problem is that the agent’s preferences are so “refined” that the set of
real numbers is too small to capture them all. This is also an example for
which indifference curves don’t exist, because the agent is never indifferent

between any two choices.

3.1 Interpersonal Comparisons

In the first problem set, you were asked to prove that if the preference relation
>~ on X is represented by a utility function u : X — R, then it is also repre-
sented by v(u(x)), for any increasing function v : R — R. This arbitrariness

in the way preferences are represented has important consequences.

The intellectual history of the utility idea had its roots in utilitarian theory,
according to which, for example, some goods might be more valuable to me
than to you, in the sense of giving me more additional utility. For example,

suppose giving you some good increases your utility by one, where if the good

15
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CHAPTER 3. UTILITY

were given to me, my utility would increases by two, given some representa-
tion. If one multiplies all of your utilities by four, one gets an equally valid
representation of your preferences, but now the extra utility you get, which
is four, exceeds my extra utility of two. This example illustrates the general
principle that utilities derived from observed choices cannot be used for "in-
terpersonal comparisons," that is, they cannot definitively resolve questions

about the relative value of various goods to you and to me.

Several variants of utility theory have been developed that might, in prin-
ciple, be used for interpersonal comparisons. These variants give meaning
to statements like "food means more to a starving person than to a sated

person."

One famous variant is based on choices made behind the veil of ignorance, in
which individuals are asked to consider the possibility that they might have
become either the starving person or the sated person. Behind the philosoph-
ically motivated veil of ignorance, they do not know which position they will
occupy and are asked to decide, from that perspective, what rule they would
hope applies to allocate any extra food that might become available. This
attempt to base a moral decision on a choice behind the veil of ignorance will
be discussed again after we have treated the theory of choice under uncer-
tainty. A criticism of this entire approach is that it is based on hypothetical
choices, rather than real ones. Hypothetical choices, critics argue, do not
have the same standing as real choices and are not a reliable way to predict

real choices.

Another variant develops a different conception of utility theory, based on
the idea that people do not notice small differences and express indifference
between choices that are close. If that accurately describes human behav-
ior, then one might determine a unit for measuring utility by determining
empirically the just noticeable difference. The idea is to derive a utility rep-
resentation in which x > y <= u(x) > u(y)+1and so x ~ y <= not(z > y
ory = z) <= |u(z) — u(y)| < 1. This is a theory in which > is transi-

16



3.2. RESTRICTIONS ON PREFERENCES

tive but ~ is not, so it is fundamentally different from the theory described
above. This theory formalizes the idea that a starving person may benefit
more from extra food than a sated person. In fact, if a small amount of food
were transfered from the sated person, she might not even notice that it was

missing while the hungry person would enjoy a clear benefit.

These and other theories of choice are omitted here so that we can focus
our limited attention on the details of rational choice, which is the model
that underlies the overwhelming majority of economic analysis. Ironically,
however, the very acknowledgement that we do have limited attention that
can affect our choice of what to study is itself a challenge to the classic model

of rational choice.

3.2 Restrictions on Preferences

To make progress in economics research, it is almost always necessary to make
additional assumptions that restrict preferences in various ways. Economists
try to be careful about these assumptions. We make the minimal assumption
necessary for the analysis to be tractable and investigate all the implications

of any assumption, so that they can be tested using whatever data is available.

In this section, we will look at several restrictions on preferences that are the
most commonly used ones in economic analysis. Our task in each case is to
identify how restrictions on preferences and restrictions on utility functions
are related. On one hand, since modelers usually work with utility functions,
the idea is sometimes to identify all the restrictions on choices implied by a
particular assumption about utility. On the other hand, when the desired
restriction on choices is given, the problem is to identify the exact restriction

on utility functions that characterize the given restriction on choices.

17
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CHAPTER 3. UTILITY

3.2.1 Continuity

The following continuity restriction on preferences is a condition that implies
not only that a utility representation exists, but that a continuous representa-
tion exists. This restriction is usually considered uncontroversial in empirical
science for the simple and compelling reason that any finite set of observed
choices that is consistent with HARP is also consistent with continuity. That
is, if the data take the form of observations of choices, then continuity can

be contradicted only by an infinite data set.

DEFINITION: Continuous A preference relation 77 on X is continuous
if for any sequence {(z", y™)}>2, with 2" — z, y" — y, and 2" 5 y"Vn ,

we have that = =~ v.

Continuity says that the consumer’s preferences cannot exhibit jumps. For
example, an individual with a continuous preference relation cannot prefer
each element in sequence {z"} to the corresponding element in sequence
{y"} but then suddenly reverse her preferences at the limiting points of the

sequences, x and y.

An equivalent definition of continuity is the following: V z, the upper contour
set {y € X | y = x} and the lower contour set {y € X | z 77 y} are both

closed; that is, they include their boundaries.

For an example of preferences that are not continuous, we can again use
the lexicographic preferences described on page 15. Consider the sequence
of bundles 2" = (X, 0) and y" = (0, 1). For every n, 2™ = y". However,
limy"™ = (0, 1) = (0, 0) = lim ™.

Continuity of a rational preference relation guarantees the existence of a

continuous utility function representation, as stated in Proposition 4.

18



3.2. RESTRICTIONS ON PREFERENCES

PROPOSITION 4: If X C R", then any complete, transitive,
and continuous preference relation =on X can be represented by

a continuous utility function u: X — R.

PRrROOF: We prove this for the case of a strictly monotone preference relation
7, and X = R’. (Note: A preference relation 2 is strictly monotone if
x >> y implies that x > y, that is, if the consumer always prefers a bundle
that provides more of every good.) This extra restriction allows a simple,

constructive proof.

Let e = (1,...,1) denote one bundle in z, and consider elements of R’} of the
form ae = (v, ..., a) where o > 0. We claim that for any « € R}, there exists
a unique value a(z) € [0,00) such that a(z) ~ . We will then construct u

by letting u(z) = a(x).

To prove the claim, let € R, be given. Consider the two sets

AT = {aeR,:aerx},

A7 = {aeRi 1z ae}.
Both sets are non-empty. To see why, note that x 77 0 by monotonicity,
so A~ in non-empty, and if we choose @(x) such that @(z)e > x, then by
monotonicity @e 7~ z and @ € A'. By the continuity of preferences, both
sets are also closed, and their union is R, so AT N A~ is not empty. Also,
for any o/ > «, monotonicity implies that o’e = ae, so AT N A~ contains at

most one element: call it a(x).

n

Now for every x € R, we specify the utility by u(z) = a(x). We need to
show that this utility function (1) represents the preference relation -, and
(2) is continuous. For the representation part, suppose that a(z) > a(y).

Using monotonicity, z ~ a(z)e = a(y)e ~ y, so x 7~ y. Conversely if

x 77, y, then by construction a(x)e ~ = 7 y ~ a(y)e, and by monotonicity
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a(z) > a(y). Continuity is more subtle and we omit it (see MWG, Section
3.C if you're interested in a proof). O

Q.E.D.

Intuitively, the construction in the proof specifies the utility of any choice x
by finding the point at which its indifference surface crosses the 45° line. This
specification is, of course, completely arbitrary. It is simply a mathematically

convenient way to represent someone’s preferences.

3.2.2 Monotonicity and Local Non-Satiation

The next restrictions examined below are monotonicity and local non-satiation,
which are used extensively in Part II. Roughly put, these imply that con-
sumers will prefer to spend all of their wealth or income on something, be-
cause more is always at least as good as less and consumers are never satiated.
This conclusion about consumer spending will be a useful intermediate step

for making inferences from consumer’s observed choices.

Monotonicity =~ DEFINITION: Monotonicity A preference relation - on X is
monotone if for any z, y € X, {x; > y;};_, implies that = - y.

Monotonicity of preferences makes sense if X represents bundles of goods, so
that if z = (21, .., 2,), then z; is the amount of good k. If “more of a good

is good,” then preferences will be monotone.

Local Non- DEFINITION: Local Non-Satiation A preference relation 2~ on X is
Satiation locally non-satiated if for any y € X, and € > 0, 3 x € X N B, (y) such that
T - .
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If an agent’s preferences are locally non-satiated, this means that there is no
bundle in X that is “ideal” or even locally ideal. There is always a slight
change that would leave the agent better off. Notice that local non-satiation
is a joint property of the preference relation >~ and the choice set X. If the
choice set involves only integer quantities of every good, then the preferences
cannot be locally non-satiated. However, the condition does not require that
all goods be divisible; it is satisfied, for example, in every model for which

one good (say, leisure time) is always valuable and divisible.

3.2.3 Convexity

The next restriction is that consumer preferences are conver. Convexity is
used to infer the existence of prices for various purposes. It is fundamental for
studying markets because in the standard model of competitive economies,
when consumer preferences are convex, market clearing prices exist. In gen-
eral, when preferences are not convex, they may not exist. In the latter
case, one cannot sustain the common hypothesis that a competitive, market-
clearing outcome approximates actual market outcomes. Convexity is also
used in discussions about whether consumer preferences are recoverable from
choices from various budget sets. In that application, convexity is used to
establish that there are prices which cause different preferences to lead to

different choices.

DEFINITION: Convex A preference relation >~ on a convex choice set
X is convex if x 7~ y and 2’ 7 y implies that for any ¢ € [0, 1],
tr+ (1 —t)2’ Z y.

Convexity is often described as capturing the idea that agents like diversity.
That is, if an agent is indifferent between = and y and has convex preferences,

then she will like %x + %y at least as much as either x or y. Of course, this
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doesn’t always make sense. You might like a root beer or orange juice, but

not a mixture.

Whether convexity makes sense often depends on the interpretation of the
goods space. For example, if the components of x are rates of consumption,
then a half-half mixture of root beer and orange juice might mean drink-
ing root beer half the time and orange juice half the time. Convexity of
preferences seems more plausible in that interpretation than in the previous
one. Similarly, some find convexity easier to rationalize if the goods are more
highly aggregated — for instance, if the goods are food and clothing, than if
goods are highly specific.

An equivalent way to describe convexity uses the indifference curves and
surfaces of undergraduate economics: convexity of preferences amounts to
the assumption that the upper contour set of any y € X-meaning the set
of points above the indifference surface through y—is a convex set. Formally,

the upper contour set is given by
Upper Contour Set of y = {x € X : 2 Z y}.

There is also a related notion of strict convezity, which says that if z =~ y
and ' 77 y and x # 2’ then for any ¢t € (0,1), tx + (1 — t)a’ = y.

Figure 3.1 is a representation of preferences that are not convex. Figure 3.2
is a representation of preferences that are convex but not strictly convex.

Figure 3.3 is a representation of preferences that are strictly convex.
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U (y)

Non-convex.

Figure 3.1: Non-Convex Preferences

Convex, but not strictly convex.

Figure 3.2: Convex Preferences.
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Strictly convex.

Figure 3.3: Strictly Convex Preferences.

Each of these properties of preferences has a corresponding property if we

look at a preference-representing utility function.

PROPOSITION 5: Suppose the preference relation 7Zon X can be
represented by u : X — R. Then:

1. = is monotone iff u is nondecreasing
2. 7 is locally non-satiated iff u has no local mazima in X

3. = is (strictly) convez iff u is (strictly) quasi-concave.

Quasi Note that the utility function u(.) is quasi-concaveif the set {y € R | u(y) > u(x)}
Concavity is convex Yz, or, equivalently, if u (ax + (1 —a)y) > min{u(x), u(y)} for

any z, y and all a € [0, 1].

3.2.4 Separability

Separability A common assumption made by empirical researchers into consumer behavior
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is separability.

For example, a researcher might postulate that a consumer’s decision about
how to divide her total entertainment spending among various kinds of en-
tertainment options (such as movies, concerts, clubs, and so on) does not
depend on her choices about housing, food, clothing, etc. When this as-
sumption can be validated, it simplifies empirical work because, for example,
it implies that the researcher can legitimately estimate the demand for enter-
tainment goods based on (1) total entertainment spending and (2) the prices
of entertainment goods, even without information about the prices of food,

housing and clothing.

Suppose a consumer is choosing a bundle of goods in R". There may be
some number of goods m < n that the consumer regards as a natural group.
For example, they may be different kinds of entertainment goods described
by the vector x € R™, while the other goods are described by the vector
y € R"™™ so that the consumer’s overall choice is described by (z,y) € R".
We investigate when it is possible to identify the consumer’s vector of enter-
tainment choices of x from limited information, namely, information about
total entertainment spending and the prices of various entertainment goods,
without any further information about y or the consumer’s total spending.

When that is possible, we say that the choice of x does not depend on y.

EXAMPLE: Suppose that the choices x are various kinds of en-
tertainment, while the choices y include restaurant meals, home
meals, and housing. Suppose that the decision to purchase restau-
rant meals is closely related to entertainment, for example be-
cause one eats out more often when attending the movie or a
concert or, reversely, because a leisurely dinner out is a substitute
for other entertainment. In that case, the overall level of enter-
tainment spending could affect the choice between home meals

and restaurant meals, even if the overall level of food spending

25



Wealth
Effects

CHAPTER 3. UTILITY

doesn’t affect the choice between movies and concerts.

Notice, too, that separability can be layered in various ways. A utility func-
tion might have the form u(z,y) = U(v,(z),v,(y)), which gives symmetric
separability. Another possibility is that u(z,y,z) = U(V (v(z),y), z), where
V' and v are real-valued functions and V' and U are each increasing in the
first argument. This would imply both that the choice of x does not depend
on (y,z).and that the choice of (z,y) does not depend on z. This might
represent the preferences of a consumer who regards restaurant meals y as
in the entertainment category, separable from non-entertainment decisions,
and also regards the choice x between attending movies or concerts as inde-

pendent of the quantity of restaurant meals.

We have just scratched the surface of separability. For example, economists
sometimes wish to create a price index for entertainment goods that depends
only on the prices of those goods. Such an index is useful if, together with the
other prices and the consumer’s income, it determines the total spending on
entertainment goods and the consumer’s welfare. The question of whether it
is possible to create a price index for a category of goods, independent of the
prices of other goods, is logically distinct from the question studied above.
The index sought here is used to characterize how much is spent in total on
entertainment goods whereas above we asked about how any total spending

would be allocated among entertainment goods.

3.2.5 No Wealth Effects

Finally, much current research about organizations and transactions costs
relies on the idea that there are no wealth effects. This means that consumer
choices about how much to buy of certain goods are unaffected by wealth
transfers (at least within certain ranges), so efficient allocations can be de-

termined without knowing how wealth is distributed. This is a very special
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situation, and the associated question is the usual one: what must the utility

function look like for this no-wealth-effects property to be satisfied?

Let us suppose that X = R, x Y, which we interpret to means that the

choice space consists of a quantity of some one good and some other choices.

PROPOSITION 6: Suppose the preference relation =~ on

X =R, XY is complete and transitive and that there exists
y €Y such thatVyeY, (0,y) = (0, y). If

1. “Good 1 is Valuable” (a,y) 7 (d',y) iffa > d'.

2. “Compensation is Possible” for every y € Y, there exists at > 0
such that (0, y) ~ (t, 7).

3. “No Wealth Effects” if (a,y) = (d’, y') then Vit € R,
(a+t,y) Z (a'+1, y)

Then 3 v :Y — R such that (a, y) = (d', ') iff
a+v(y) >d +ov(y'). Conversely, if the preference relation 7~ on
X =R x Y is represented by u(a, y) = a + v(y), then it satisfies

the three preceding conditions.

PROOF: By the second condition, we may define a function v(y) so that for
eachy € Y, (0, y) «~ (v(y), ). By the third condition, for any (a, y), (a’, ¥/)
RxY, (a,y) «~ (a+v(y), y) and (¢, y') «~ (' +v(y'), ¥). So by transitivity,
(a,y) zz (d, v/) if and only if (a+v(y), ¥) 77 (¢’ +v(y'), ¥). By the first con-
dition, that is equivalent to a+v(y) > o’ +v(y’). Hence, the three conditions
imply that (a, y) = (¢, v/') if and only if a + v(y) > @’ + v(y/).

m

It is routine to verify the converse, namely, that the representation implies

the three conditions. [

Q.E.D.
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The first condition of the proposition implies the local non-satiation con-
dition. The second condition ensures that good one is sufficiently valuable
that some amount of it will compensate for any change in y. The condition
is most reasonable for applications in which all the relevant goods are traded
in markets. It is certainly possible to imagine choice problems in which com-
pensation of this sort is not possible. A person’s choices might reflect a
conviction that there is no way for cash or market transactions to compen-
sate fully for poor health or for the loss of one’s child, or for an increased

likelihood of going to heaven.

The third condition is a subtle one, combining elements of separability and
framing. It asserts separability, because it asserts that the choice between two
alternatives does not depend on the consumer’s initial endowment of good
1. In addition, because the objects of choice are outcomes and transfers, it
allows the choice to be framed in terms of changes in good 1, rather than

the level of consumption of good 1.

The form a+wv(y) is called the quasi-linear form and is usually used with the
good 1 interpreted as "money" or the numeraire good. Particularly in the
theory of the firm, a profit-maximizing firm is often assumed to convert all
outcomes of any sort into a money equivalent that it adds to its cash profits

as a criterion to evaluate complex outcomes.

3.3 A Few Criticism of Rational Choice

The central position of the rational choice model in economic analysis does
not mean that it is beyond challenge. On the contrary, its very centrality
means that it is important for economists to be aware of its role and limits.
There is a long tradition of research marshaling experimental and empirical
evidence that is in conflict with the most basic rational choice model. Re-

cently, there is a growing movement that questions the model’s assumptions
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and seeks to incorporate insights from psychology, sociology and cognitive

neuroscience into economic analysis.

What does it mean for preferences to be the foundation for this rational choice
approach to economic modeling? Suppose for example we wanted to compare
the relative merits of capitalism and socialism. The rational choice approach
would start by specifying the relevant preferences (for example, everyone likes
to consume more, some people might not like inequality, and so on), model
the allocation of resources under capitalism and socialism and then make a
comparison as to which system people prefer by comparing the outcomes of
the systems. This approach takes preferences as primitives, abstracting from
the idea that preferences themselves are affected by institutions — this is the
sense in which preferences are foundational. Without that, the comparative

welfare analysis of the different systems would be much trickier.

Usually (but not always), rational choice approaches are also consequentialist;
they abstract also from the logical possibility that people care about process,
rather than merely economic outcomes. Of course, institutions clearly do
affect preferences and some people are willing to exchange worse economic
outcomes for a sense of control. To some extent, the standard model can
be relaxed to accommodate these points, but generally speaking it is pre-
cisely these simplifications — that preferences are fundamental, focused on
outcomes, and not too easily influenced by one’s environment — that allows
economic analysis to yield sharp answers to some interesting public policy

questions.

A main criticism of the most basic rational choice model is that real-world
choices often appear to be highly situational or context-dependent (meaning
that an individual’s preferences are easily influenced by her environment).
The way in which a choice is posed, the social context of the decision, the
emotional state of the decision-maker, the addition of seemingly extraneous
items to the choice set, and a host of other environmental factors appear

to influence choice behavior. The existence of the marketing industry is
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testament to this, and many other examples are possible. A simple example
is the presence of a tempting chocolate cake on the dessert menu might make
you feel good about sharing an order of apple pie, when you might have
ordered fruit instead if you hadn’t been tempted by the chocolate cake.

Strictly speaking, there is little formal problem in allowing preferences to
depend on context. That said, the strength of the rational choice model de-
rives from the assumption that preferences are relatively stable and not too
situation-dependent. This is the source of the theory’s empirical content, be-
cause it allows us to observe choices in one situation and then draw inferences
about choices in related situations. Such inferences become problematic if

preferences are highly sensitive to context.

A strong assumption of the basic choice model is that agents have essentially
unlimited cognitive capacity. If they are faced with a choice set many times,
they will always solve the preference optimization problem correctly. In the
standard model, there is no randomness or mistakes in the agent’s behavior.
A criticism is that in reality, many choices are not considered. Rather they
are based on intuitive reasoning, heuristics or instinct. That people rely on
intuition and heuristics is not surprising. Given that people have limited
cognitive capacity, there is simply no way to reason through every decision.
Arguably, instinctive judgement may often mimic preference maximization,
particularly in familiar environments. When people rely on heuristic reason-
ing or intuition in unfamiliar situations, however, the results can be striking

departures from the sort of behavior predicted by rational choice models.

Particularly surprising behavior can result when people in unfamiliar situa-
tions are given inappropriate contextual clues. For instance, Ariely, Loewen-
stein and Prelec (2003, QJE) report an experiment in which they showed
students in an MBA class six ordinary products (wine, chocolate, books,
computer accessories). The items had an average retail price of about $70.
Students were asked whether they would buy each good at an amount equal

to the last two digits of their social security number. They were then asked
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to state their valuation for each good.

In spite of the familiarity of the products, students’ reported valuations corre-
lated significantly with the random final digits of their social security number.
That is, it appears that the students had no firm valuation in mind and “an-
chored” their value to an essentially arbitrary suggestion (the final two digits
of the social security number). Interestingly, Ariely, Loewenstein and Prelec
go on to show that once people have fixed on a valuation, they respond to
price changes, and other changes in ways that are consistent with the rational

choice model. The authors label this behavior “coherent arbitrariness.”

A second example that has attracted much attention is the role of default
choices. For instance, Madrian and Shea (2001, QJE) provide evidence that
enrollment in employer-sponsored 401-K retirement plans (an extremely good
deal for most workers by objective criteria) is highly sensitive to whether
workers must “opt-in” or “opt-out” of the plan. Another example along these
lines comes from organ donations. In the United States, people must opt-in
to become a donor by signing up when they get their driver’s license. There
is a dire shortage of organ donors relative to needy recipients. In Spain,

people must opt-out and there the supply greatly exceeds the demand.

The behavior in these examples is hard to square happily with the most
basic preference maximization approach. Once one tries to move away from
optimization, however, modeling becomes a difficult challenge. That being
said, there are models of decision-making that acknowledge people’s limited
cognitive capacity. These models take a variety of forms: some assume that
people make systematic “mistakes” or optimize only partially; others assume
people used mixed learning rules, or rules of thumb. It is safe to say however,
that there is plenty of work left to be done in developing better models that

incorporate bounded rationality.
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Chapter 4
Consumer Choice

Since Marshall, the standard approach to developing a theory of competitive
markets is to separate demand behavior (consumer theory) from supply be-
havior (producer theory) and then use the notion of market equilibrium to
reconcile demand and supply. Here we will study consumer theory, in Part
ITI, we will study producer theory, and in Part V, we will explore what is

meant by a market equilibrium.

4.1 The Consumer Problem

Consumer theory is concerned with how a rational consumer would make
consumption decisions. Under assumptions that we explored in our notes
on choice theory, a consumer’s preferences over the infinite set of consump-
tion bundles can be represented using a continuous utility function. What
makes the consumer problem worthy of separate study, apart from the gen-
eral problem of choice theory, is that the sets from which a consumer chooses
are assumed to be defined by certain prices, p, and by the consumer’s income
or wealth, w. With that motivation in mind, we define the consumer problem
(CP) to be:
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)

such that p-z <w

The idea is that the consumer chooses a vector of goods = = (z1, ..., z,) to
maximize her utility subject to a budget constraint p - r < w that says she

cannot spend more than her total wealth.

What exactly is a “good”™” The answer lies in the eye of the modeler. Depend-
ing on the problem to be analyzed, goods might be very specific, like tickets
to different world series games, or very aggregated like food and shelter, or
consumption and leisure. The components of x might refer to quantities of
different goods, as if all consumption takes place at a moment in time, or
they might refer to average rates of consumption of each good over time. If
we want to emphasize the roles of quality, time and place, the description
of a good could be something like "Number 2 grade Red Winter Wheat in
Chicago." Of course, the way we specify goods can affect the kinds of as-
sumptions that make sense in a model. Some assumptions implicit in this

formulation will be discussed below.

Given prices p and wealth w, we can write the agent’s budget set:
B(p,w)={z eR} |p-z <w}

The consumer’s problem is to choose the element x € B(p, w) that is most
preferred or, equivalently, that has the greatest utility. If we restrict ourselves
to just two goods, the budget set has a nice graphical representation, as is

shown in Figure 4.1.
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T2
P1> D1

D2 = D2

Zq

Figure 4.1: The budget set at different prices.

Let’s make a few observations about the model:

1. The assumption of perfect information is built deeply into the formu- Perfect
lation of this choice problem, just as it is in the underlying choice Information
theory. Some alternative models treat the consumer as rational but
uncertain about the products, for example how a particular food will
taste or a how well a cleaning product will perform. Some goods may
be experience goods which the consumer can best learn about by trying
("experiencing") the good. In that case, the consumer might want to
buy some now and decide later whether to buy more. That situation
would need a different formulation. Similarly, if the agent thinks that
high price goods are more likely to perform in a satisfactory way, that,

too, would suggest quite a different formulation.

2. Agents are price-takers. The agent takes prices p as known, fixed and Price
exogenous. This assumption excludes things like searching for better Taking

prices or bargaining for a discount.

3. Prices are linear. Every unit of a particular good k comes at the same Linear

price pg. So, for instance, there are no quantity discounts (though Prices
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these could be accommodated with relatively minor changes in the

formulation).

4. Goods are divisible. Formally, this is expressed by the condition = €
R?, which means that the agent may purchase good k in any amount
she can afford (e.g. 7.5 units or 7 units). Notice that this divisibil-
ity assumption, by itself, does not prevent us from applying the model
to situations with discrete, indivisible goods. For example, if the com-
modity space includes automobile of which consumers may buy only
an integer number, we can accommodate that by specifying that the
consumer’s utility depends only on the integer part of the number of
automobiles purchased. In these notes, with the exception of the the-
orems that assume convex preferences, all of the results remain true

even when some of the goods may be indivisible.

4.2 Some Topological Preliminaries

Before we can continue studying consumer choice, we need two additional

definitions.

DEFINITION: Closed A set, S, is closed iff the complement of S, \S, is

open. Alternatively, S is closed iff all convergent sequences in S have limits
in S.

Question: Let S = {(z, y) € R? | 22 + y*> < 1}. Is S closed?

Answer: Yes, the complement of S is an open set, because for (z, y) € \9,
the epsilon ball B, of radius € = /22 + y? — 1 will be entirely contained in
\S.

DEFINITION: Bounded A set, S C R", is bounded iff 3 M € R, such
that all s € S are contained within the M-ball, B),.
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Marshallian Demand

In this section and the next, we derive some key properties of the consumer

problem.

5.1 Properties of Budget Sets

PROPOSITION 1: (Budget Sets) Budget sets are homoge-
neous of degree 0: for all A > 0, B(Ap, \w) = B(p, w).

Proof. For A > 0, B(Ap,\w) = {z € R} |Ap-z < Aw} ={z e R}[p -z <
w} = B(p,w). O

Q.E.D.

PROPOSITION 2: (Compact)  If {p; > 0}, then B(p, w)

18 compact.
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Proof. If {p; > 0}._,, then B(p,w) is a closed and bounded subset of R’.

Hence, by the Heine-Borel theorem?, it is compact. [

Q.E.D.

5.2 Solution to the Consumer Problem

PropPoSITION 3: (Existence) If u is a continuous function
and {p; > 0}""_,, then the consumer problem (CP) has a solution.

Proof. By the maximum-minimum theorem, a continuous function on a

compact set achieves its maximum. []
Q.E.D.

Question: Does the function f(z) = x on the interval [0, 1) achieve its max-

imum?

Answer: No, even though there are an infinite number of points as near to 1
as we please, there is no point = for which f(z) = 1. However, if the set were
compact, for example the set [0, 1], then any continuous function on that set

achieves its maximum.

We call the solution to the consumer problem, x(p, w), the Marshallian de-
mand (or Walrasian demand or uncompensated demand). In general, z(p, w)
is a set, rather than a single point. Thus z : R} x R, = R%is a corre-
spondence. It maps prices p € R” and wealth w € R, into a set of possible
consumption bundles. One needs more assumptions (we’re getting there) to

ensure that x(p, w) is single-valued, so that z(-,-) is a function.

I The Heine-Borel theorem states that a set in R is compact iff it is closed and bounded.
This result is special to the metric space R™. A compact set is closed and bounded in
any metric space; note however that a closed and bounded set is not necessarily compact,
unless it is a subset of R"™.
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5.3 Properties of Marshallian Demand

PROPOSITION 4: (Homogeneity)  Marshallian demand is
homogeneous of degree zero: for all p, w, and A > 0, x(Ap, \w) =

z(p, w).

Proof. Since by proposition 1, B(Ap, \w) = B(p, w), z(Ap, A\w) and x(p, w) are

solutions to the same problem, hence they must be equal. [
Q.E.D.

The upshot of this result is that if prices go up by a factor A, but so does
wealth, the purchasing pattern of an economic agent will not change. Simi-
larly, it does not matter whether prices and incomes are expressed in dollars,

rupees, euros or yuan: demand is still the same.

PROPOSITION 5: (Walras’ Law)  If preferences are locally

non-satiated, then for any (p, w) and x € x(p, w), p-x = w.

Proof. By contradiction. Suppose z € z(p, w) with p-z < w. Then there is
some € > 0 such that for all y with ||z —y|| < ¢, p-y < w. But then by local
non-satiation, there must be some bundle y for which p-y < w and y > =.

Hence z ¢ x(p, w) — a contradiction. [J
Q.E.D.

Walras’s Law says that a consumer with locally non-satiated preferences will
consume her entire budget. In particular, this allows us to re-express the

consumer problem as:

g (o

such that p-x = w
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where the budget inequality is replaced with an equality.

The next result speaks to our earlier observation that there might be many

solutions to the consumer problem.

PROPOSITION 6: (Convexity/Uniqueness) If prefer-
ences are convex, then x(p, w) is convez-valued. If preferences
are strictly convex, then the consumer optimum s always unique,

that is, x(p, w) is a singleton.

Proof. Suppose preferences are convex and x, ' € z(p, w). For any t €
0, 1], tx+(1—t)z" € B(p, w) because p-(tz+(1—t)x’) = tp-x+(1—t)p-a’ <
tw+ (1 — t)w = w. Then, since x > 2’ and preferences are convex, we also
have tx + (1 — t)z’ = 2/. Hence, tx + (1 — t)z’ € z(p, w). O

If preferences are strictly convex, the same construction leads to a contradic-
tion. Suppose x, x' € z(p, w) with z # x’. Then strict convexity means that
for any t € (0,1), to + (1 — t)z’ > a’. Hence, 2’ ¢ z(p, w). O

Q.E.D.

Thus, assuming the consumer’s utility is continuous and locally non-satiated,

we have established four properties of the Marshallian demand function
z(p, w):

1. it "exists",

2. is insensitive to proportional increases in price and income,

3. exhausts the consumer’s budget, and

4. is single-valued if preferences are strictly convex.

The next result uses these properties to derive restrictions on the derivatives

of the demand function.

42



5.3. PROPERTIES OF MARSHALLIAN DEMAND

ProrPoOSITION 7 (Adding Up) Suppose preferences are
locally non-satiated, and Marshallian demand s a differentiable

function of prices and wealth. Then

1. A proportional change in all prices and income doesn’t affect demand:
Vp, w,andi=1,...,n,
. 0 0
;pj o (@i (p, w)) + w5 - (i (p, w)) =0

2. A change in the price of one good won’t affect total expenditure: ¥V p,

w,andi=1,...,n,
. 0
> 05 (b, w) + i (p, w) = 0
= Di

3. A change in income will lead to an identical change in total expenditure:

Vp, w,
En Di 9 (z; (p, w)) =1
=1 aw ,

Proof. (1) This follows directly from homogeneity. For all i, z;(Ap, A\w) =

x;(p, w) by homogeneity. Now differentiate both sides by A and evaluate at
A =1 to obtain the result. [

(2) This follows from Walras’s Law. For non-satiated preferences, p-x(p, w) =

w holds for all p and w. Differentiating both sides by p; gives the result. [

(3) This also follows from Walras’ Law. For non-satiated preferences, p -

x(p, w) = w for all p, w. Differentiating both sides by w gives the result.

Q.E.D.

43



CHAPTER 5. MARSHALLIAN DEMAND

44



Chapter 6

Indirect Utility

The indirect utility function v(p, w) is defined as: Indirect
Utility
v(p, w) = max u(x) subject to p-x < w. Function

So v(p, w) is the value of the consumer problem, or the most utility an agent

can get at prices p with wealth w.

PROPOSITION 8: (Properties of v)  Suppose u is a continu-
ous utility function representing a locally non-satiated preference

relation 77 on R't. Then v(p, w) is:

1. homogeneous of degree zero: ¥ p, w, and X\ > 0, v(Ap, Aw) = v(p, w)
2. continuous on {(p, w) | p > 0, w > 0}
3. non-increasing in p and strictly increasing in w

4. quasi-convez (i.e. the set {(p, w) | v(p, w) < v} is conver for any v.
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Proof. (1) Homogeneity follows by a familiar argument. If we multiply both

prices and wealth by a factor A\, the consumer problem is unchanged. [

(2) Let p* — p and w"™ — w be sequences of prices and wealth. We
must show that lim, ., v(p", w™) = v(p,w), which we do by showing that
liminf, v(p™, w™) > v(p,w) > limsup,, v(p",w™) > liminf, v(p™, w™). The
last inequality is true by definition, so we focus attention on the first two
inequalities.

For the first inequality, let x € z(p,w), so that v(p,w) = wu(z) and let
a = w"/(p" - x). Then, a™z € B(p",w"), so v(p",w"™) > u(a™z). By lo-
cal non-satiation, p - z = w, so lim, a"” = limw"/(p" - x) = w/(p-z) = 1.
Hence, using the continuity of u, liminf, v(p™, w™) > liminf u(a™z) = u(x) =
v(p, w), which implies the first inequality.

For the second inequality, let 2" € x(p",w™) so that v(p™, w™) = u(z").
Let n* be a subsequence along which limy_ u(z™) = limsup, v(p", w™).
Since p” > 0, the union of the budget sets defined by (p™*, w™") and (p, w) is
bounded above by the vector b whose it component is b; = (sup w™)/(inf p?).
Since the sequence {x"k} is bounded, it has some accumulation point x.
Since p”]c Cant < w”k, it follows by taking limits that p -z < w. Thus,
v(p, w) > u(x) = limy_.so u(z™) = limsup, v(p", w™), which implies the sec-

ond inequality. [

(3) For the first part, note that if p’ > p, then B(p’, w) C B(p, w), so clearly
v(p', w) < v(p, w). For the second part, suppose w’ > w, and let x € x(p, w).
By Walras’ Law, p - = w < w’, so by a second application of Walras’ Law,
x ¢ x(p, w'). Hence, there is some 2/ € B(p, w') such that u(z’) > u(x). O

(4) Suppose that v(p,w) < v and v(p’,w’) < v. For any t € [0, 1], consider
(p', w') where p' = tp+ (1 —1¢)p" and w' = tw + (1 —t)w’. Let = be such that
ptx < w'. Then, w' >p'-x=tp-x+ (1 —1t)p -z, so either p-x < w or
p - x < w' or both. Thus, either u(z) < v(p,w) <7 or u(x) < v(p/,w') <7,
so u(z) < v. Consequently, v(p', w") = max,.pt.p<pt u(z) <T. O Q.E.D.
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Demand with Derivatives

7.1 Lagrangian

How does one actually solve for Marshallian demand, given preferences, prices
and wealth? If the utility function is differentiable,! then explicit formulae
can sometimes be derived by analyzing the Lagrangian for the consumer
problem:
Lz, A pip,w) = u(x) + Nw —p-a] + Y
i=1

where \ is the Lagrange multiplier on the budget constraint and, for each ¢,
(i is the multiplier on the constraint that x; > 0. The "Lagrangian problem"

1S:

\Jnin max L(z, A\, 1) = \Jnin max u(z) + Aw—p-z| + Z; Wi

!There are mixed opinions about the differentiability assumption. On one hand, there
is no natural restriction on the underlying preference relation = that guarantees differ-
entiability. Purists claim that makes the assumption of dubious validity. On the other,
there exists no finite set of observed choices C(X, =) from finite sets X that ever contra-
dicts differentiability. Pragmatists conclude from this that differentiability of demand is
empirically harmless and can be freely adopted whenever it is analytically useful.
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The first order conditions for the maximization problem are:

ou
ou. — i (7.1)
and A >0and pu; >0foralli=1,...,n. The solution must also satisfy the

original constraints:
p-r<w and x>0,
as well as the complementary slackness conditions:
AMw—p-z)=0 and wix; =0for k=1,... n.

These conditions, taken together are called the Kuhn-Tucker conditions.

Suppose we find a triplet (x, A, 1) that satisfies the Kuhn-Tucker conditions.
Does x solve the maximization problem, so that = € z(p, w)? Conversely,
if z € z(p, w) is a solution to the consumer problem, will x also satisfy the

Kuhn-Tucker conditions along with some (A, p)?

The Kuhn-Tucker Theorem tells us that if © € z(p, w), then (subject to
a certain "regularity" condition) there exist (A, u) such that (z, A, ) solve
the Kuhn-Tucker conditions. Of course, there may be other solutions to the
Kuhn-Tucker conditions that do not solve the consumer problem. However,
if u is also quasi-concave and has an additional property, then the solutions
to the consumer problem and the Kuhn-Tucker conditions coincide exactly,
that is, the Kuhn-Tucker conditions are necessary and sufficient for x to solve

the consumer problem.

ProPOSITION 9 (Kuhn-Tucker Theorem)  Suppose that u
is continuously differentiable and that x € z(p, w) is a solution
to the consumer problem. If the constraint qualification holds at

x, then there exists \, p1,..., i, > 0 such that (xz, A\, u) solve
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the Kuhn-Tucker conditions. Moreover, if u is quasi-concave and
has the property that [u(z') > u(z)] = [Vu(x)- (2’ —x) > 0], then
any x that is part of a solution to the Kuhn-Tucker conditions is

also a solution to the consumer problem.

Proof. See the math review handout (starting on page 18).

Q.E.D.

7.2 Marginal Rate of Substitution

We can use the Kuhn-Tucker conditions to characterize Marshallian demand.

First, using (7.1), we may write:

Ou < Ap;, andifx; >0 Ou = AD;.
ox; ox;

From this, we derive the following important relationship: for all goods ¢ and

J consumed in positive quantity:

ou(x(p,w))/0x; pi

MRS = 5utelpw)) 0z, ~

This says that at the consumer’s maximum, the marginal rate of substitution

between i and j equals the ratio of their prices.

Were this not the case, the consumer could do better by marginally changing

her consumption. For example, consider z* € z(p, w). If %

an increase in the consumption of good 1 of dx;, combined with a decrease

> PL then
P2

in the consumption of good 2 of % dx; would be feasible and would yield a

utility change of %ﬁ:) dzry — %x;) £ dzy > 0. Therefore, z* ¢ z(p, w)

Figures 7.1 and 7.2 give a graphical representation of the solution to the con-

sumer problem. In Figure 7.1 both goods are consumed in positive quantities,
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so 11 = pe = 0, and the marginal rate of substitution along the indifference

curve equals the slope of the budget line at the optimum.

Hp;

Du(x*)

T

Figure 7.1: Marshallian demand: interior solution.

In Figure 7.2, we have a corner solution, so p; > 0 while s = 0. Here the

MRS does not equal the price ratio.

Du(z*)

Gradient of the —x; < 0 constraint.

Figure 7.2: Marshallian demand: corner solution.
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7.3 Lagrange Multiplier

The Lagrange multiplier ) in the first order conditions (equations 7.1) gives
the marginal, or shadow, value of relaxing the constraint in the CP. Therefore,
A equals the consumer’s marginal utility of wealth at the optimum. To see
this directly, consider the case where x(p, w) is a differentiable function and
that {x;(p,w)}~; > 0 Vi. By the chain rule, the change in utility from a

marginal increase in w is given by

Oz(p,w)

Vu(a(pw) =g

where Vu(z) = [Qu(x)/0z1, ..., Ju(z)/0x,] and % = [0z (p,w) /0w, ..., Ox,(p,w)/Ow]'.

Substituting A\p for Vu(z(p,w)), we have that the change in utility from a
marginal increase in w is given by Ap %. Now, notice that by Proposition

7 (the adding up theorem) number 3, 37", p; -2 (z; (p, w)) = 1, s0

0z(p, w) "~ Ozi(p,w)
Ap———= = A — e = A.
P ow ;p ow

In general, if u(.) is quasi-concave and there is a unique solution to the

consumer problem then v is differentiable at (p, w) and W =A>0.

The Lagrange multiplier A gives the value (in terms of utility) of having Lagrange
an additional unit of wealth. Because of this, A is the sometimes called Multiplier
the shadow price of wealth or the marginal utility of wealth (or income). In
terms of the history of thought, the terms marginal utility of income or and
marginal utility of wealth were important, because utilitarians thought that
such considerations would guide the choice of public policies that redistribute
of wealth or income. However, nothing in the consumer theory developed so
far suggests any basis for using the marginal utility of income or wealth, as

we have defined it, to guide redistribution policies.
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7.4 Roy’s Identity

For our next calculations, it will be useful to have A > 0. One might think
that adding an assumption of local non-satiation would imply that strict
inequality, since it certainly implies that v is increasing in w. However,
neither local non-satiation nor any other condition on consumer preferences

2 However, if there is everywhere

> is sufficient for the desired conclusion.
at least one good j for which du/0x; > 0, then one can infer that dv/0w >

(9u/0z;)/p; > 0.

PRrRoPoOSITION 10 Roy’s Identity  Suppose that v is differ-
entiable at (p,w), with p; > 0, w > 0, and g—g} > 0. Then z(p,w)

1S a singleton and

_ dv(p, w)/Op;
zi(pw) =  Ou(p,w) /0w

Proof. The indirect utility function is given by v(p, w) = u(z(p,w)). If we
n  Ou(zx) Ox;
jzl a{Ej 8pz :

differentiate this with respect to p; we obtain, dv(p, w)/0p; = >
Substituting in the first order conditions for 88“7@ we get du(p,w)/0p; =
J

A oD gipj. Now note that by Proposition 7 (the adding up theorem)
number 2, >0 | p; é%_ (xj (p, w)) + x; (p, w) = 0. So the expression now
becomes Ov(p,w)/dp; = —Az; (p, w). As just shown in our discussion of

Lagrange multipliers, W = \. Together, this establishes the identity. []

2This is a purely technical point, but it serves to remind us that the same preferences
can be represented in quite different ways. Suppose a representation u is selected so that
the corresponding indirect utility satisfies % > 0. Suppose v(p, w) = v and consider
the alternative representation %(z) = (u(x)—)3. This utility function represents the same
preferences as u and has corresponding indirect utility function o(p,w) = u(z(p,w)) =
(v(p,w) —v)3. Applying the chain rule leads to % = 0. Thus, whether the marginal
utility of income is positive or zero at a point is not just a property of the preferences

themselves, but is a joint property of the preferences and their representation.
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Q.E.D.

7.5 Homotheticity

DEFINITION: Homotheticity A function f(z) is homothetic if f(z) =
g(h(x)) where g is a strictly increasing function and h is a function that
is homogeneous of degree 1, that is, a function is called homothetic if it is
a positive monotonic transformation of a function that is homogeneous of

degree 1.

Economists often find it is useful to assume that utility functions are homothetic. Homotheticity
Notice that this assumption is not much different than that of homogeneous
of degree 1. Utility functions are only defined up to a monotonic trans-
formation. Therefore, assuming that preferences can be represented by a
homothetic function is equivalent to assuming that they can be represented

by a function that is homogeneous of degree 1.

The importance of homothetic utility functions is that one indifference curve
is much like another. Slopes of the curves depend only on the ratio of the
goods and not on how far the curve is from the origin. We can study the
behavior of an individual who has homothetic preferences by looking only
at one indifference curve or at a few nearby curves without fearing that our

results would change dramatically at very different levels of utility.

This can also be a useful way to identify a homothetic utility function. The
marginal rate of substitution for a homothetic utility function depends only
on the ratio of the amounts of the two goods and not on the individual

quantities of the goods.
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Chapter 8

Hicksian Demand

8.1 Expenditure Minimization Problem

We now make what will prove to be a very useful detour in consumer theory

and introduce the consumer’s expenditure minimization problem (EM P).

migp-s
s.t.u(x) > u,

where © > u(0) and p; > 0Vi. This problem finds the cheapest bundle
at prices p that yields utility of at least u.! The solution h(p,u) of the
expenditure minimization problem is called the Hicksian (or compensated)

demand. The question now is, when does the EMP have a solution?

! This problem is sometimes called the "dual consumer problem," but that terminology
suggests incorrectly that "duality" results always apply. In general, duality results will
apply to this problem only when u is quasi-concave, but that property plays no role in
most of our analysis. It is more accurate to refer to this problem as the "ezpenditure
minimization problem."
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ProrosITION 11 (Existence) If p; > 0Vi, u(.) is continu-
ous, and there is some x such that u(x) > u, then (EMP) has a

solution.

Proof. Let u(z) > w. Let S = {z|p- 2 < p-Z} N{z|u(zr) > u}. By
construction, the first set in the intersection is non-empty and compact and
by continuity of u, the second set is closed, so S is a compact set. Hence,
the continuous function p - z achieves its minimum at some point =* on S.
By construction, for every = ¢ S such that u(x) > u, p-x >p-T > p-z*, so
x* solves the KM P.[]

Q.E.D.

We define the expenditure function to be the corresponding value function:

e(p,u) = min p - x subject to u(x) > u.
z€RY

Thus, e(p,u) is the minimum expenditure required to achieve utility u at

prices p, and h(p,u) is the set of consumption bundles that the consumer

would purchase at prices p if she wished to minimize her expenses but still

achieve utility u.

What is the motivation for introducing the expenditure minimization prob-
lem, when we have already analyzed the "actual" consumer problem? We

take this detour to capture two main advantages.

1. We will use the expenditure function to decompose the effect of a price
change on Marshallian demand into two corresponding effects. On one
hand, a price reduction makes the consumer wealthier, just as if she
had received a small inheritance, and that could certainly affect demand
for all goods. We will call that the wealth effect (or income effect). In

addition, even if the consumer were forced to give up her extra wealth,
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the price reduction would cause the optimizing consumer to substitute
the newly cheaper good for more expensive ones and perhaps to make
other changes as well. That is called the substitution effect.

2. The expenditure function also turns out to play a central role in welfare

economics. More about that later in these notes.

With these advantages lying ahead, we first introduce three propositions
to identify, respectively, the properties of Hicksian demand, those of the

expenditure function, and the relationship between the two functions.

PRroPOSITION 12 (Properties of Hicksian Demand)  Sup-
pose u(.) is a continuous utility function representing a preference

relation 7 on RYL. Then

1. Homogeneity: h(p,u) is homogeneous of degree zero in p. For any p,
u, and A > 0, h(Ap,u) = h(p,u).

2. No Excess Utility: If u > u(0) and p; > 0Vi, then Vx € h(p,u),

u(zr) = u.

3. Convexity/Uniqueness: If preferences are convez, then h(p,u) is a con-
vex set. If preferences are strictly convex and p; > 0V i, then h(p,u) is

a singleton.

Proof. (1) Note that the constraint set, or choice set, is the same in the

expenditure problem for (Ap,u) and (p, ). But then

min Ap-x =M\ min p-T

{xeRi:u(x)Zu} {xERi:u(x)Zu} ’

so the expenditure problem has the same solution for (Ap,u) and (p,w). O
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(2) Suppose to the contrary that there is some z € h(p, u) such that u(z) >
u > u(0). Consider a bundle 2’ = ¢tz with 0 <t < 1. Then p- 2’ < p- x,
and by the intermediate value theorem, there is some ¢ such that u(z’) > u,
which contradicts the assumption that = € h(p,u). O

(3) Note that h(p,u) ={z € R? |u(z) >u} N{z | p-z = e(p,u)} is the
intersection of two convex sets and hence is convex. If preferences are strictly
convex and z, 2’ € h(p,u), then for t € (0,1), 2" = tz + (1 — t)2’ satisfies

2" > x and p - 2" = e(p, u), which contradicts "no excess utility." O

Q.E.D.

ProPOSITION 13 Properties of the Expenditure Func-
tion  Suppose u is a continuous utility function representing a

locally non-satiated preference relation 27 on R’.. Then e(p,u) is

1. Homogeneous of degree one in p: ¥ p, u and A > 0, e(Ap,u) = Xe(p, u)
2. Continuous in p and u
3. Nondecreasing in p and strictly increasing in u provided p; > 0V1

4. Concave in p.

Proof. (1) As in proposition 12, note that

e(Ap,u) = min Ap-x = A min p-x = Xe(p,u).
{mERi:u(w)zu} {wERﬁ:u(m)Zu}

So, e(p, u) is homogeneous of degree 1. [J

(2) I omit this proof, which is similar to proving continuity of the indirect
utility function. [J

(3) Let p’ > p and suppose z € h(p',u). Then u(h) > u, and e(p’,u) =
p x> p-x. It follows immediately that e(p,u) < e(p’,u). Therefore, e(p, u)

is nondecreasing in p. [J
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For the second statement, suppose to the contrary that e(p, u) is nondecreas-
ing in u, that is v’ > u with e(p,u’) < e(p,u). Then, for some = € h(p,u),
u(x) = u' > u, which contradicts the "no excess utility" conclusion of propo-
sition 12. [

(4) Fix u, let p” = tp+ (1 —t)p’ for t € (0,1), and suppose = € h(p”,u).
Then, p-x > e(p,u) and p' -z > e(p',u), so e(p”,u) = (tp+ (1 —t)p') - x =
tp-x)+(1—t)(p-x) > te(p,u) + (1 —t)e(p’, u). Therefore, e(p, u) is concave
in p. [

Q.E.D.

A natural question here is how are the Hicksian demands related to the
expenditure function. For an answer to this question, we turn to Shepard’s

Lemma.

PROPOSITION 14: Shepard’s Lemma  Suppose that u(.) is
a continuous utility function representing a locally non-satiated
preference relation - and suppose that h(p,u) is a singleton.
Then the expenditure function is differentiable in p, and for all

1=1,...,n,

de(p, u)
api

= hi(p,u) .

Proof. Using the chain rule, the change in expenditure can be written as:

de(p,u) _ Opih(p,u)) Oh(p,u)

From the first order conditions for an interior solutions to the EMP, p;, =
)\W. So substituting into the expression above:
e(p, u)

Ou(h(p,u)) Oh(p,u)
Ip; '

= h(p,u) + A o, o,
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But, since the constraint u(h(p,u)) = u holds for all p in the EMP, we know

Ou(h(p,u)) Oh(pu) de(p,u)
that % % = 0. Therefore, % = h(p,u). O

Q.E.D.

Thought question: What is de/du?

8.2 Hicksian Comparative Statics

Comparative statics are statements about how the solution to a problem
will change with parameters. In the consumer problem, the parameters are
(p,w), so comparative statics are statements about how z(p, w), or v(p, w)
will change with p and w. Similarly, in the expenditure problem, the param-
eters are (p,u), so comparative statics are statements about how h(p,u) or

e(p,u) will change with p and w.

Our first result gives a comparative statics statement about how a change
in price changes the expenditure required to achieve a given utility level w.
The "law of demand" formalizes to the idea when the price of some good

increases, the (Hicksian) demand for that good decreases.

PROPOSITION 15: Law of Hicksian Demand  Suppose p, p’
>0 andlet x € h(p,u) and 2’ € h(p',u). Then, (p' —p)(z' —x) <
0.

Proof. By definition u(z) > u and u(z') > u. So, by optimization, p’ - 2/ <
p'-xand p-x < p-2’. We may rewrite these two inequalities as p’- (' —z) <0
and 0 > —p - (¢/ — z), and the result follows immediately. (J

Q.E.D.

The Law of Demand can be applied to study how demand for a single good

varies with its own price. Thus, suppose that the only difference between p’

60



8.2. HICKSIAN COMPARATIVE STATICS

and p is that, for some k, p, > pi, but pi = p; for all ¢ # k. Then, with

single-valued demand,

(P — o) [ (P, w) — T (p, w)] < 0.

This means that hy(p,u) is decreasing in py. Or in words, Hicksian demand

curves slope downward.

A simple way to see this graphically is to note that the change in Hicksian

demand given a change in price is a shift along an indifference curve:

T2

h/

T

Figure 8.1: Hicksian Demand: Change in Price

In contrast, Marshallian demand z(p, w) need not be decreasing in p; (though
this is typically the case). To see why, consider Figure 8.2. We will come
back to how Marshallian demand reacts to a change in price, and to the
relationship between the change in Marshallian and Hicksian demand, in a

minute.
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Figure 8.2: Marshallian demand may increase with price increase.

If the Hicksian demand function h(p, u) is singleton-valued and continuously
differentiable, we can use derivatives to describe how this demand responds
to price changes. The next result is closely related to corresponding results

that we have previously discussed concerning a firm’s input demands.

Consider the matrix:

Ohi(p,u) Ohn (p,u)
Op1 Op1
D,h(p,u) = .
6h1(p7u) 8hn(p7u)
Opn Opn

Recall the definition that an n X n symmetric matrix D is negative semi-
definite if for all z € R, z- Dz <.

Proposition 16 Suppose that u(.) represents a preference

relation =~ and that h(p,u) a singleton and is continuously differ-

entiable at (p,u), where p; > 0Vi. Then D,h(p,u) = —ahg;“) is

symmetric and negative semi-definite.

Oe(p,u)

Ohi(pu) _ O%e(pu)
B We

Proof. By Shephard’s Lemma, h;(p,u) = T, oy

SO

may rewrite this as:
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Dph(p7 U) = DI27€(p, U)

For symmetry, recall that Young’s Theorem from calculus tells us that for
any twice continuously differentiable function f(z,y), f.y, = fyz- Applying

this result shows us that

Ohi(p,u)  D’e(p,u)  %e(p,u)  0Oh;(p,u)

apj Opi 5pj apj Opi Opi

and hence D,(p,u) is symmetric. [J

For negative semi-definiteness, recall the definition that an n x n symmetric
matrix D is negative semi-definite if for all z € R", z- Dz < 0. From
proposition 13, e(p, u) is a concave function of p. This implies that Df)e(p, w)
is negative semi-definite (see the appendix D of MWG for a proof.) [J

Q.E.D.

What is most surprising here is the symmetry of the demand matrix: the
effect of a small increase in the price of good 7 on the quantity demanded
of good j is identical to effect of a similar increase in the price of good j on
the quantity demand of good 7. Thus, the derivative of the Hicksian demand
for butter, say in kilograms, with respect to the price of compact disks, say
in $/disk, is the same as the derivative of the Hicksian demand for compact

disks with respect to the price of butter in $/kilogram.

The proposition also encompasses within it a differential form of the law of
demand. For, the rate of change of the Hicksian demand for good j as the
price p; increases is Oh;/Op; = *e(p,u)/ (9p§, which is a diagonal element of
the matrix D,h. The diagonal elements of a negative semi-definite matrix are
always non-positive. To see why, let z = (0, ...0, 1,0, ...,0) have a 1 only in its
4™ place. Then since D,h(p, u) is negative semi-definite, 0 > zD,h(p,u) -z =
Oh;/Opj, proving that the j diagonal element is non-positive. That is, the

Hicksian demand for good j is weakly decreasing in the price of good j.
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Chapter 9

The Slutsky Equation

9.1 Relating Hicksian & Marshallian Demand

Next, we bring the theory together by relating Marshallian and Hicksian
demand and using that relationship to derive the Slutsky equation, which

decomposes the effect of price changes on Marshallian demand.

PROPOSITION 17  Suppose u s a utility function representing
a continuous, locally non-satiated preference relation -

zZ on RY
and let p; > 0Vi. Then,

1. For allp >0 and w > 0, h(p, v(p,w)) = z(p,w) and e(p, v(p,w)) = w

2. Forallp > 0 and u > u(0), z(p, e(p,u)) = h(p,u) and v(p, e(p,u)) = u

Proof. (1) Fix prices p; > 0V i and wealth w > 0 and let 2 € z(p, w). Since
u(z) = v(p,w) and p-z < w, it follows that e(p, v(p, w)) < w. For the reverse

inequality, we use the hypothesis of local non-satiation. It implies Walras’
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Law, so for any 2’ with p -2’ < w, it must be that u(z’) < v(p,w). So,
e(p,v(p,w)) > w. Combining these implies that e(p, v(p,w)) = w and hence
that A(p, v(p,w)) = z(p,w). U

(2) Fix prices p; > 0Vi and target utility v > u(0) and let x € h(p,u).
Since u(x) > wu, it follows that v(p,e(p,u)) > u(x) > u. By the "no excess
utility" proposition, for any 2’ with u(x’) > u, p- 2’ > p-z = e(p,u). Thus,
v(p,e(p,u)) < u. So, v(p,e(p,u)) = u and it follows that x(p,e(p,u)) =
h(p,u). O

Q.E.D.

This result is quite simple and intuitive (at least after one understands the
local non-satiation condition). It says that if v(p, w) is the most utility that
a consumer can achieve with wealth w at prices p, then to achieve utility
v(p, w) will take wealth at least w. Similarly, if e(p,u) is the amount of
wealth required to achieve utility u, then the most utility a consumer can get
with wealth e(p, u) is exactly u.

9.2 The Slutsky Decomposition

PropPoOSITION 18 Slutsky Equation  Suppose u is a contin-
wous utility function representing a locally non-satiated preference
relation 22 on R" and let p; > 0Vi and w = e(p,u). If h(p,u)
and x(p,w) are singleton-valued and differentiable at (p,u,w),

then for all i, j,

op;  Op; ow (p,w).
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Proof. Starting with the identity,

hz(pv ﬂ) = xz(p7 6(p7 H))
letting w = e(p, u) and differentiating with respect to p; gives:

Ohi(p,w)  Oxi(p,w) N Ox;(p, w) Oe(p, )
Op; Op; ow op;

. . . . s de(p,u
Substituting in for the last term using Shephard’s lemma (% = hi(p, u))

and the identity h;(p,u) = z;(p, w) gives the result. [
Q.E.D.

The Slutsky equation is interesting for two reasons. First, it gives a (fairly
simple) relationship between the Hicksian and Marshallian demands. More
importantly, it allows us to analyze the response of Marshallian demand to

price changes, breaking it down into two distinct effects:

Ipi Op; Jw _
—_—— ~~
total effect substitution effect wealth effect

An increase in p; does two things. It causes the consumer to substitute away
from ¢ toward other relatively cheaper goods. And second, it makes the
consumer poorer, and this wealth effect also changes his desired consumption

— potentially in a way that counteracts the substitution effect.

The Slutsky equation contains within it a suggestion about how to test the
subtlest prediction of consumer choice theory. Given enough data about
z(p,w), one can derive the matrix of derivatives D,z and add to each term
the corresponding wealth effect to recover the matrix of substitution effects,
which corresponds to D,h. If consumers are maximizing, then the matrix

obtained in that way must be symmetric (and negative semi-definite).
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Many economists have regarded this analysis and its symmetry conclusion
as a triumph for the use of formal methods in economics. The analysis
does demonstrate the possibility of using theory to derive subtle, testable
implications that had been invisible to researchers using traditional verbal
and graphical methods. Historically, that argument was quite influential,
but its influenced has lessened over time. Critics typically counter it by
observing that formal research has generated few such conclusions and that
the maximization hypothesis on which all are based fares poorly in certain

laboratory experiments.

Figure 9.1 illustrates the Slutsky equation, decomposing the demand effect
of a price change into substitution and wealth effects. Fixing wealth w,
when the price drops from p = (p1,p2) to p' = (pj,p2) With p| < p;, the
demand changes from x to z/. Letting v = v(p,w) and v’ = v(p/, w), note
that x = h(p,u), and 2’ = h(p,u’). Then the shift from x to 2’ can be
decomposed as follows. The substitution effect is the consumer’s shift along
her indifference curve from x = h(p,u) to h(p',u) and a wealth effect or
income effect is the consumer’s shift from h(p’,u) to x(p’,w). Why is this
second effect a wealth effect? Because h(p',u) = z(p',e(p’,u)) the move
corresponds to the change in demand at prices p’ from increasing wealth

from e(p’,u) to w = e(p’,u’).

Figure 9.1: Wealth and Substitution Effects
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9.3 Demand Relationships Among Goods

Consider the following definitions:

DEFINITION: Normal/Inferior Good Good 7 is a normal good if
x;(p,w) is increasing in w. Good i is an inferior good if z;(p, w) is decreasing

in w.

DEFINITION: Regular/Giffen Good Good i is a regular good if z;(p, w)

is decreasing in p;. Good i is a Giffen good if z;(p, w) is increasing in p;.

DEFINITION: Substitute/Complement Good ¢ is a substitute for good
j if h;(p, u) is increasing in p,;. Good i is a complement for good j if h;(p, u)

is decreasing in p;.

DEFINITION: Gross Substitute/Complement  Good i is a gross sub-
stitute for good j if x;(p, w) is increasing in p;. Good i is a gross complement

for good j if z;(p, w) is decreasing in p;.

Figure 9.2 shows what happens to Marshallian demand when prices change.
Here, as the price of the first good decreases, Marshallian demand shifts from
x to 2’ to z”. In this picture, the first good is regular — as its price decreases,
the demand for it increases. Note also that as the price of good one decreases,
the Marshallian demand for the second good also increases: so goods ¢ and

J are gross complements.
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Figure 9.2: Offer Curves or Price Expansion Path

Traditional economics textbooks call a pair of goods substitutes or comple-
ments based on their Hicksian demands and reserve the terms "gross sub-
stitutes" and "gross complements" for the relations based on Marshallian
demands. Perhaps the reason for this is that the Hicksian language is easier,
because the Hicksian substitutes condition is a symmetric one, so one can
simply say that "goods ¢ and j are substitutes" without needing to specify
which is a substitute for the other. The condition is symmetric because, as
previously shown:
Ohi(p,u) _ Oh;(p,u)

apj Op;

In contrast, the gross substitute condition is not generally symmetric, because
the wealth effect on z;(p, w) caused by an increase in p; is not generally the

same as the wealth effect on z,(p, w) caused by an increase in p;:

ow

Ox;(p, w)

z;(p,w) # S0

z;i(p, w).

In common practice, when one says that two or more goods are "gross sub-

stitutes," one means that each good is a gross substitute for each other good.

Keep in mind that even if goods are substitutes in one range of prices, they
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may still be complements for another range. When tight logical arguments
are required, best practice is to describe assumptions in precise mathematical
terms and to use terms like substitutes and complements as ways to describe
and explicate the precise formal argument. Also, note that in a two-good
world, the goods can not be complements, they must be substitutes. How-
ever, the two goods could be either gross complements or gross substitutes

depending on the magnitude of the wealth effect.

QUESTION: Suppose that good ¢ is a complement for good j and that good
i is a normal good. If p; increases, will the consumer increase or decrease her

consumption of good 7

ANSWER: Because good i is a normal good, the wealth effect is negative (an
increase in the price of good j makes the consumer poorer). Because good i is
a complement for good j, the substitution effect is negative. Both the wealth
effect and the substitution effect are negative so we get an unambiguous sign
for the total effect: z;(p, w) is decreasing in p; so good i is a gross complement
for good j. The consumer will decrease her consumption of good ¢ for an

increase in p;.

QUESTION: Suppose that good ¢ is a substitute for good j and that good ¢
is a normal good. If p; increases, will the consumer increase of decrease her

consumption of good 7

ANSWER: Because good i is a normal good, the wealth effect is negative.
Because good 7 is a substitute for good 7, the substitution effect is positive.
This means that we get an ambiguous sign for the total effect, so we do not
know if goods ¢ or j are complements or substitutes. To answer this question

we would need to know the magnitudes of the two effects.
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9.4 Engel Curves

As a consumer’s wealth increases, it is natural to expect that the quantity of
each good purchased will also increase. This situation is illustrated in figure
9.3. As income increases from w to w’ to w”, the budget line shifts out and
Marshallian demand increases from xto 2’ to z”. Notice that the budget
lines are all parallel, reflecting the fact that only wealth is changing and that

prices have been held constant.

In figure 9.3, both goods increase as wealth increases, hence, both goods are
normal. This is the usual situation and that is why we refer to these types
of goods as “normal.” However, for some goods the quantity chosen may
decrease as wealth increases in some ranges. We call these goods “inferior.”
It is important to note that a good may be normal over a certain range and

then inferior over another.

If we plot z(p, w) for each possible income level w, and connect the points,

the resulting curve is called an Engel curve or Income expansion curve.:

Figure 9.3: Engel Curve or Income Expansion Path

LAn important question in development economics is how to estimate these curves
empirically. The basic approach is to estimate the demands for major budget items —
food, shelter, clothing — as a function of prices and income, and then ask how these
demands have changed and will change as the country becomes richer.
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Chapter 10

Consumer Welfare: Price

Changes

10.1 Compensating and Equivalent Variation

We now turn to a particularly beautiful part of consumer theory: the mea-
surement of consumer welfare. We assume throughout that consumer prefer-
ences are locally non-satiated and investigate the question: how much better

or worse off is the consumer as the result of a change in prices from p to p’ ?

This question is much less narrow than it may seem. For purposes of de-
termining welfare effects, many changes in the economic environment can be
viewed as price changes. Taxes and subsidies are obvious cases: they add to
or subtract from the price someone pays for a good. If we want to study the
welfare effects of technical change, such as the introduction of a new product,

we can formulate that as a change in price from p = oo to some finite price
/

D -

Let (p,w) be the consumer’s status prior to the price change, and (p’, w) the

consumer’s status after the price change. A natural candidate for measuring
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the change in welfare is to look at the change in the consumer’s utility, i.e.
at v(p/,w) — v(p,w). Of course, the problem is that this measure depends
on which utility function we choose to represent the consumer preferences.
While all give the same qualitative answer to the question of whether the
consumer is better or worse off, they give different answers to the question
of by how much she is better or worse off. In addition, the answer they give

is in utils, which have no real meaning.

While there is no complete solution to this problem, there is an elegant partial
solution. We can use the expenditure function to measure welfare changes
in dollars. Essentially, we ask: how much money is required to achieve a
certain level of utility before and after the price change? To answer this,
we need to choose a level of utility as a reference point for making this
comparison. There are two obvious candidates: the level of utility achieved
by the consumer prior to the change and the level achieved after the change.
We refer to these two measures as compensating and equivalent vartation.
Both are constructed to be positive for changes that increase welfare and

negative for changes that reduce welfare.

Compensating variation specifies how much less wealth the consumer needs
to achieve the same maximum utility at prices p’ as she had before the price
change. Letting u = v(p, w) be the level of utility achieved prior to the price

change,
Compensating Variation = e(p,u) —e(p’,u) = w — e(p’,u) .

That is, if prices change from p to p/, the magnitude of compensating variation
tells us how much we will have to charge or compensate our consumer to have

her stay on the same indifference curve.

Equivalent variation gives the change in the expenditure that would be re-
quired at the original prices to have the same ("equivalent") effect on con-
sumer as the price change had. Letting ' = v(p’,w) be the level of utility

74



10.1. COMPENSATING AND EQUIVALENT VARIATION

achieved after the price change.
Equivalent Variation = e(p,u’) —e(p/,u') = e(p,u') — w.

That is, equivalent variation tells us how much more money the consumer

would have needed yesterday to be as well off as she is today.

Figure 10.1 illustrates compensating variation for a situation where only a
single price — that of the first good — changes. In this figure, think of
the second good as a composite good (i.e. expenditures on all other items)

measured in dollars!

. Prices change from p to p’ where pj > p; and p), =
p2 = 1 and the budget line rotates in. To identify compensating variation,
we first find the wealth required to achieve utility u at prices p/, i.e. e(p’, u),
then find the difference between this and w = e(p, u), the starting level of

wealth.

X2

%

€

Figure 10.1: Compensating Variation

Figure 10.2 displays equivalent variation for the same hypothetical price

! Formally, this means we are working with the two-argument utility function @ (z1,y) =
) eRT ! u(xy, ...2y) subject to paxa + ... + PpTyn = Y.

7777
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change. Here, the first step is to find the wealth required to achieve util-

ity v’ at the original prices p.

T2

EV[

X1

Figure 10.2: Equivalent Variation

Generally speaking, compensating and equivalent variation will not be the
same, since they are the answers to different questions. There is, however,
one case for which they will coincide. If preferences are quasi-linear, then
equivalent and compensating variation are identical. Demonstrating this is

left as a homework assignment.

If the price change affects only a single good i, we can relate equivalent and

compensating variation to the Hicksian demand in this simple way:

/ Pi Je(p, u Di
vy P P}

and similarly

Pi /
EV =e(p ') —e(p', ) = / Oetp, )

Di
= [ hipi
p

/
%

Figure 10.3 shows the Hicksian demand curves for a single good (good one)
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at two utility levels u > u’, assuming that the good is normal. To identify
CV, we need to integrate the area to the left of the hi(-,u)curve between
p1 and p). Similarly, EV corresponds to the area to the left of the hy(-,u’)

between p; and pj.

b1

b1

hl('vu/) hl('vu)

xq

Figure 10.3: Relating Welfare to Demand

By construction, w = e(p,u) = e(p’,u’). This allows us to conclude that
z(p,w) = h(p,u) and z(p’,w) = h(p/,u'). This relation is plotted in Figure
10.4.

y4

V41
P1 N

hl('vu/) hl('vu)

x1 (-, w)

xq

Figure 10.4: Relating Welfare to Demand
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Figure 10.4 suggests that another measure of consumer welfare might be
obtained by integrating to the left of the Marshallian demand curve. We
define this — the area to the left of the Marshallian demand curve — as
consumer surplus.

Pi

Consumer Surplus :/ x;(p, w)dp; .

P;
In empirical work, where the regressions typically provide direct estimates of
a Marshallian demand curve, Marshallian consumer surplus is a very common
measure of consumer welfare. There is a long-standing debate in industrial
organization as to when Marshallian Consumer Surplus is a good welfare
measure (with important papers by Willig (1976, AFR) and Hausman (1981,
AER)). Consumer surplus has an important drawback — it does not have an
immediate interpretation in terms of utility theory, as do EV and CV. How-
ever, one nice feature — which is apparent in the figure — is that Consumer
Surplus is typically an intermediate measure that lies between compensating
and equivalent variation. More precisely, on any range where the good in

question is either normal or inferior,? we have the following relationship:
min{CV, EV} < CS < max{CV, EV}.

This typical relationship is sometimes used to justify consumer surplus as a

welfare measure.

The most problematic part of using these concepts—equivalent variation, com-
pensating variation, and consumer surplus-is the practice of simply adding
up these numbers across individuals to compare overall welfare from two
policies. Taken literally, this practice implies that one should be indifferent,

in terms of overall welfare, between policies that redistribute benefits from

2These are not the only logical possibilities: it is also possible that the good is normal
on part of the relevant domain and inferior on another part of the domain. Only in that
case can the inequality fail.
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the rich to the poor or from the poor to the rich. Because they omit distri-
butional issues, these various measures can do no more than give an index

of the equivalent or compensating changes in the total wealth of a society.

10.2 Consumer Welfare: Price Indices

In practice, perhaps the most important problem in the measurement of con-
sumer welfare is obtaining correct measures of the growth of the economy.
There are many subtleties involved in this measurement, depending on the
goods that one includes in deciding about welfare. For example, there are
important questions about how to measure public goods including environ-
mental amenities, safety, and so on. One subtle issue concerns how to adjust
for changes in the cost of living. That is, suppose one wants to know how
much better off people are from one year to the next, given that economic
growth has increased people’s incomes (that is, has increased GDP). Once
we have measured this increase in income, we need to account also for any
changes in prices over the same period. Thus, to measure growth in con-
sumer welfare, we need to “adjust” nominal income by a measure of the cost

of living and use this adjusted measure (of “real income”) to calculate growth.

This brings us to the topic of price indices. To define a price index (and this
is essentially what the BLS does to measure inflation), one defines a “market
basket” of goods — goods 1,2,...,n — and then compare their prices from
period to period (quarterly, yearly, whatever). Let p be the prices of these
goods “before”and p’ the prices “after”. There are basically two well-known
ways to proceed. One way is to look at the quantities of the goods purchased
in the “before” period, x, and compare the price of this basket at the two

price levels. This is called a Laspeyres index:

Laspeyres Index = : ,
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Alternatively, one can look at the quantities of the goods purchased in the

after period, x’. This is called a Paasche Indez.

/ /

p-x

Paasche Index = -
p-x

In practice, cost of living is computed using some variant of a Laspeyres or
Paasche index. In theory, there is a better alternative, which is to use what
is called an ideal index. Similar to the idea of EV or CV, an ideal index
chooses some base level of utility, and asks how much more expensive it is to

achieve this utility at prices p’ than at prices p.

Ideal Index =

where u is a “base” level of utility — typically either the utility in the “before”

or “after” period.

Generally speaking, neither the Paasche or the Laspeyres Index are “ideal”.
To see why, let u be the utility in the before period. Then
/. /

Pl pa _e(pu)
Laspeyres = =
p-x e(p,u) €p,’U,>

v

= Ideal(u)

The problem is that at prices p’, the consumer will not choose to consume
x. Most likely, there is a cheaper way to get utility u. This is called the
substitution bias because the Laspeyres index does not account for the fact

that when prices change, consumers will substitute to cheaper products.
The Paasche index also suffers from substitution bias:

e(p',u’)
e(p, ')

Lot
Paasche = P = <

= Ideal(v).
e eal(u')

In the last decade, the Bureau of Labor Statistics measure of inflation (the

Consumer Price Index or CPI) has come under criticism. One of the main
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criticisms is that it suffers from substitution bias. There is also concern over

the CPI for several other reasons, which include the following biases.

e “New Good Bias”. When new products are introduced, we only have a
price in the after period, but not in the before period (or if products
disappear, we have the opposite problem). The CPI deals with this by
waiting 5-10 years to add these products (for example, cellular tele-
phones, rice krispies treats cereal) to the index. But these products
make us better off, meaning that the CPI tends to underestimate how
much better off we really are. A substantial body of recent research is

focused on measuring the welfare impact of new goods.

e "Outlet Bias”. The BLS goes around and measures prices in various
places, then takes an average. Over the last 20 years, people have
started buying things cheaply at places like Walmart and Costco. Thus,
the BLS may tend to over-estimate the prices people actually pay.

Besides price indexes for all goods, it is sometimes useful to construct price
indexes for categories of goods based solely on the prices of the goods in that
category. For example, one might hope to be precise about statements like
"entertainment goods have become 10% more expensive" without having to

refer to non-entertainment goods like food, housing, and transportation.

Ideally, we would like our price index to stand in for more detailed information
in various calculations and empirical studies, especially calculations about
consumer welfare and demand studies. With those intuitive goals in mind,

we turn to a formal treatment.

We divide the goods 1, ...,n be divided into two groups. Let goods 1, ..., k be
the ones in the category of interest, which here we call "entertainment goods,"
while goods k+1, ..., n denote the other, non-entertainment goods. We make

two assumptions and impose three requirements. The assumptions are (1)
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that consumer preferences are locally non-satiated and (2) that there exist
some prices at which the consumer prefers to make a positive expenditure on

entertainment goods. The second assumption rules out trivial cases.

The first requirement is that the entertainment price index should depend
only on the prices (p1, ..., px) of the entertainment goods and should be ho-
mogeneous of degree 1, so that doubling all the prices doubles the index. The
second requirement is that if the prices of entertainment goods change in a
way that leaves the index unchanged and if the consumer’s income and the
prices of non-entertainment goods remain unchanged, then consumer welfare
should also remain unchanged. We formulate this as the requirement that
the two conditions (1) P(p) = P(p’) and (2) p; = p); for j = k+1,...,n imply
that for all u, e(p;u) = e(p’,u). Third, one should be able to compute the
demands for non-entertainment goods from the prices for those goods and
the price index for entertainment goods. This is formalized by the require-
ment that conditions (1) and (2) above should also imply h;(p) = h;(p') for
j=k+1,..n.

The second requirement above is a separability requirement, reminiscent of
the one we analyzed in the note on choice theory. In choice theory, separa-
bility was used to decompose choices: we required that the decision maker’s
ranking of choices from one set does not depend on the choices specified
from another set. Here, separability is used to decompose the price vector:
we require that the welfare ranking of entertainment price vectors should not
depend on non-entertainment prices. As in choice theory, this separability
implies a particular structure for the ranking function-there a utility func-
tion, here the expenditure function. Separability implies that there exist two
functions P : R¥ — R and € : R** — R, with € increasing in its first

argument, such that for all p and u,

€(p, U) = /e\(P<p)7pk+17 ovy Pns U)
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We leave the proof as an exercise. By Shepard’s lemma, when separability
applies, we may further conclude that for j =k +1,...,n,
0

0 N ~
h’j(p7 U) = %6(177 U) = %e(P(p%pk-i-la '-'>pn>u) = hj(P(p)7pk+1a --'>pn>u)'
J J

where the last equality defines the function ﬁj.

Notice that the isoquants of P are the same as the "restricted" isoquants of
e, where the restriction is to changes in the prices of the first £ goods. If
P is differentiable with non-zero derivatives, then we can characterize the
slopes of the isoquants of P as follows. Applying the chain rule for any
1<i<j <k,

de/Op; _ 0e/OP OP[dp; _ OP/0p
de/Op;  de/OP OP/dp;  OP/dp;

The construction so far guarantees the existence of a function P, but not
one that is homogeneous of degree one. The next step is to convert the
function P into an index P that is homogeneous of degree 1. To that end,
fix an arbitrary positive price vector prices p > 0 and normalize the index
by setting }A’(p) = 100. For any price vector p’ > 0, there is a unique o > 0
such that P(p') = P(ap): define P(p') = 100c. The index P defined in this
way is homogeneous of degree one. (We leave it as an exercise to derive the
existence of such a unique o and the homogeneity of P using our assumptions

and the properties of the expenditure function.)

To summarize, a price index satisfying all the requirements set out above
exists if and only if the expenditure function is separable, that is, if and
only if there exist functions € and P as described above. The separability
of the expenditure function described here is different from the separability
of the consumer’s utility function. Neither separability condition implies the
other, and both conditions can be useful for creating tractable models for

both theoretical and empirical inquiries.
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Chapter 11
Technology

In the standard model, the firm is an entity, just like the consumer. The
firm has an objective function, profit, that it wants to maximize, just as the
consumer has a utility function that it wants to maximize. The consumer
faces a budget constraint while the firm faces a constraint imposed by its
technological capabilities. Because the firm’s objectives are very similar to
a consumer’s objectives, many of the methods and results from consumer

theory will apply to producer theory.

11.1 Features of the Standard Model

The standard model has the following features. Firms are described by fixed
and exogenously given technologies that allow them to convert inputs (in
simple models, these are land, labor, capital and raw materials) into outputs
(products). "Competitive" producers take both input and output prices as
given, and choose a production plan (a technologically feasible set of inputs

and outputs) to maximize profits.

Before we get into the details, let’s remark on a few key features of the model.
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1. Firms are price takers. This competitive firm assumption applies to

both input and output markets and makes it reasonable to ask ques-
tions about (1) what happens to the firm’s choices when a price changes
and (2) what can be inferred about a firm’s technology from its choices
at various price levels. For output markets, the assumption fits best
when each firm has many competitors who produce perfectly substi-
tutable products, and a parallel condition applies to input markets.
Of course, even the most casual empiricism suggests that many firms
sell differentiated products and have at least some flexibility in setting
prices, and even small firms may have market power in buying local
inputs, such as hiring workers who live near a mine or factory, so the
results of the theory need to be applied with care. Even so, the pat-
tern of analysis established in this way is often partially extendable to

situations in which firms are not price takers.

. Technology is exogenously given. This assumption is sometimes criti-

cized as too narrow to be useful in a world of technical change, product
innovations, and consumer marketing, but it is more flexible and en-
compassing than most critics acknowledge. The exogenous technology
model formally includes the possibility of investing in technical change,
provided these investments are themselves treated as inputs into a pro-
duction process. Similarly, the model formally includes advertising and
branding that alter consumer’s perceptions, provided that we represent
these activities as transforming the output into a different product. It
allows managerial effort and talent to be inputs as well, if they, too,

are treated as simple inputs into production.

. The firm maximizes profits. Since the time of Adam Smith, if not

earlier, many observers have emphasized that corporations are char-
acterized by a separation between ownership (the stockholders) and

control (management), and that this separation weakens the incentives
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of managers to maximize profits. The problem of motivating managers
to act on behalf of owners has been a main concern for the economics

(and law) of agency theory.

Students sometimes wonder about the role of assumptions such as these, par-
ticularly when they are contrary to the facts of the situation. Economists
have taken a range of positions concerning how to think about simplify-
ing assumptions, and there is no consensus about the "correct" view. One
extreme position is to deny the relevance of any inference based on such mod-
els, because the premises of the model are false. At the opposite extreme,
some practicing economists seem willing to accept "standard" or "custom-
ary" assumptions uncritically. Both of these extreme positions are rejected
by thoughtful people.

All economic modeling abstracts from reality by making simplifying but un-
true assumptions. Experience in economics and other fields shows that such
assumptions models can serve useful purposes. One purpose is to support
tractable models that isolate and highlight important effects for analysis by
suppressing other effects. Another purpose is to serve as a basis for numeri-
cal calculations, possibly for use in estimating magnitudes, deciding economic
policies, or designing economic institutions. For example, one might want to
estimate the effect of a tax policy change on overall investment or hiring.
The initial calculations based on a simplified model might then be adjusted

to account for the effects suppressed in the model.

For a model to serve these practical purposes, its relevant predictions must be
reasonably accurate. The accuracy of predictions can sometimes be checked
by testing using data. Sometimes, the "robustness" of predictions can be
evaluated partly by theoretical analyses. In no case, however, should models
or assumptions be regarded as adequate merely because they are "usual"
or "standard." Although this seems to be an obvious point, it needs to be

emphasized because the temptation to skip the validation step can be a
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powerful one. Standard assumptions often make the theory fall into easy,
recognizable patterns, while checking the suitability of the assumptions can

be much harder. The validation step is not dispensable.

11.2 Production Sets

We start by describing the technological possibilities of the firm. Suppose
there are n commodities in the economy. A production plan is a vector
y = (Y1, .-, Yn) € R™, where an output will have y, > 0 and an input will
have y, < 0. If the firm has nothing to do with good k, then y, = 0. The
production possibilities of the firm are described by a set Y C R", where
any y € Y is feasible production plan. Figure 11.1 illustrates a production
possibility set.
T2

T

Figure 11.1: A Production Possibility Set

Throughout our analysis, we will make the innocent technical assumptions

that Y is non-empty (so as to have something to study!) and closed (to
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make it more likely that optimal production plans exist). Consider the more

interesting and substantive economic properties production sets might have:

e Free Disposal. The production set Y satisfies free disposal if y € YV
implies that ¢y € Y for any ¢/ < v.

e Shut Down. The production set Y has the shut-down property if 0 € Y;

that is, the firm has the option of using no resources and producing

nothing.
e Nonincreasing Returns to Scale. The production set Y has nonincreas- Returns
ing returns to scale (loosely, "decreasing returns to scale") if y € YV to Scale

implies that ay € Y forall 0 < a < 1.

e Nondecreasing Returns to Scale. The production set Y has nondecreas-
ing returns to scale (loosely, "increasing returns to scale") if y € YV
implies that ay € Y for ally o > 1.

e Constant Returns to Scale. The production set Y has constant returns
to scale if y € Y implies that ay € Y for all a > 0.

e (Conwvexity. The production set Y is convex if... Y is convex. This con-
dition incorporates a kind of “nonincreasing returns to specialization”,
meaning that if two “extreme” plans are feasible, their combination will
be as well. In addition, if 0 € Y, then convexity implies nonincreasing

returns to scale.

Another way to represent production possibility sets is using a transformation
function T : R" — R, where T'(y) < 0 implies that y is feasible, and T'(y) > 0
implies that y is infeasible. This is represented in Figure 11.2. You can think
of the transformation function simply as a convenient way to represent a set.
The set of boundary points {y € R™ : T'(y) = 0} is called the transformation

frontier.t

!Several interpretations can be offer of the function T'(y). As just one example among
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T2

y T >0

xq

slope™= MRT(y)

Figure 11.2: Marginal Rate of Transformation

When the transformation function is differentiable, we can define the marginal

rate of transformation of good | for good k as:

9T (y)/ 0y

MRT, . (y) = ") Jogr

The marginal rate of transformation measures the extra amount of good k
that can be obtained per unit reduction of good I. As Figure 11.2 shows, it
is equal to the slope of the boundary of the production set at point y.

Thinking in terms of production sets leads to a very general model where
each good k can be either an input or an output — that is, a firm may both
produce widgets, and also use widgets to make gadgets, with y; being the
net amount of widgets produced. Often, it is convenient to separate inputs

and outputs, letting ¢ = (¢1, ..., qz,) denote the vector of the firm’s outputs,

many, one might interpret it to define the amount of technical progress required to make
the combination y a feasible one. With that interpretation, using the currently available
technology, one can produce any element of the set {y|T'(y) < 0}.
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and z = (z1, ..., z)r) the vector of inputs (where L + M = N).

If the firm has only a single output, we can write output as a function of the
inputs used, ¢ = f(z). In this case, we refer to f(-) as the firm’s production
function. We can also define the marginal rate of technological substitution

to be:
0f(2)/0x

9f (2)/ 0z

The marginal rate of technological substitution tells us how much of input

MRTSy(y) = —

k must be used in place of one unit of input [ to maintain the same level of

output. It is illustrated in Figure 11.3

22

{z:/(2) =g}

21

slope = MRTS(y)

Figure 11.3: Isoquants and MRTS.
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Chapter 12
Profit Maximization

In this chapter, we will study the market behavior of the firm. We will study
both a maximization and a minimization problem, just as we did during con-
sumer theory. We will assume throughout this chapter that Y is nonempty,

closed, and satisfies free disposal.

12.1 The Profit Maximization Problem

We write the profit maximization problem for the firm as:

maxp -y
y

st. yeVY

where we assume that p > 0.! The constraint that y € Y can be alternatively
written as T'(y) < 0.

'We have not yet made sufficient assumptions to ensure that a maximum exists, so it
would be more proper to write sup,cy p-y. The focus of our investigation here, however,
will be on the properties of the maximum when it exists, rather than on conditions for a
maximum to exist, so we will condition to use the "max" notation.
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There are two functions of special interest in studying the problem. The
first is called the "optimal production correspondence" and is denoted by
y(p). The correspondence y : R = Y maps a vector of prices into the set of
profit-maximizing production plans. The second, called the "profit function,"
identifies the maximal value of the problem and is denoted by 7(p). That is,
the profit function 7 : R} — R is defined to be:

m(p) = maxp - y.
(p) = maxp-y
We now record some useful properties of the profit function and the optimal
production correspondence. Recall that the vector notation p > p’ is defined

by the conjunction: p > p’ and p # p'.

PRoPOSITION 1: Properties of m1  The profit function w has
the following properties:
1. 7(+) is homogeneous of degree one, i.e. for all A > 0, w(Ap) = An(p).
2. 7(-) is convez in p.

3. If Y is closed and conver, then Y = {y € RY : p.y < 7n(p) for all
p € RV}

4. If Y 1s closed and convex and has the free disposal property, then Y =
{yeRY :p-y <mw(p) for all p e RY}.

Proof. (1) Note that m(\p) = maxycy A\p -y = Amaxyey p-y = Ar(p). O

(2) Fix p,p’ and define p' = tp + (1 — ¢)p’ for t € [0,1]. And let y* € y(p").
Then

tr(p) + (1= t)n(p) = tp-y' + (L—t)p -y =p" -y =7(p'). O
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For the proof of (3) and (4) we will need the separating hyperplane theorem:

Separating Hyperplane Theorem LetY C RY be a closed
and conver set and suppose x ¢ Y. Then there exists p € RY

with p # 0 such that p -z > sup,cy (p - y)-

(B)Let Y = {z € R" : p-z < 7(p) for all p € R*}. We need to show
that Y C Y and that Y C Y. The first inclusion follows from the definition
of m. For the reverse inclusion, suppose that Y is closed and convex and
x ¢ Y. Then, by the separating hyperplane theorem, there exists p € R"
such that p - x > max,ey p-y = m(p). It follows that = ¢ Y. The finding
r¢Y =z ¢ Y establishes that Y C V. O

(4) We argue exactly as in (3), but with one additional step. Let Y = {y €
R : p-y < 7(p) for all p € RY}. We need to show that ¥ C Y and
that Y C Y. The first inclusion follows from the definition of 7. For the
reverse inclusion, suppose that Y is closed and convex and = ¢ Y. Then,
by the separating hyperplane theorem, there exists p € R” such that p-x >
max,ey p -y = m(p). By free disposal, if any component of p were negative,
then sup,cy p -y = +00. So, no component is negative, that is, p € ]Rf.
Therefore 2 ¢ V. The finding 2 ¢ Y = = ¢ Y establishes that Y C Y. O

Q.E.D.
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PROPOSITION 2: Properties of y The optimal production

correspondence y has the following properties:

1. y(-) is homogeneous of degree zero, i.e. for all X > 0, y(Ap) = y(p).

2. If Y is convex, then for all p, the set y(p) is convex. If Y is strictly
convez, p # 0 and y(p) # 0, then y(p) is a singleton.

3. The Law of Supply. For any p,p’,y € y(p) and y' € y(p'),

(0 —p)(y —y) >0.

Proof. (1) Note that m(Ap) = Ar(p), so for A > 0,
yAp) ={y eY|[py=m(\p)} ={y € Y|[Apy=Ip)}={y€Y|py=7p)}=yp). O

(2) Observe that y(p) =Y N{y € R} |p-y = 7w(p)}. If Y is convex, then y(p)
is the intersection of two convex sets and hence is itself convex. [J

Suppose Y is strictly convex but y(p) is not a singleton. Then for any y #

y' € y(p), we have " = L1y + Ly € interior(Y) and, since y(p) is convex,
2 2 )

y" € y(p). That’s impossible, because a non-trivial linear function (one with

p # 0) has no local maximum. [J

(3) Given any p,p’,y € y(p) and ¢’ € y(p'), profit maximization at price
vectors p and p’ imply that p-y > p-y and p' - ¢/ > p’ - y, respectively. So,
p-(y—y)>0>p - (y—1v), from which conclusion follows. O

Q.E.D.
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Figure 12.1: The Profit Maximization Problem

X2

{ylp-y==(p)}

X1

Y /

_ph

slope = s

Figure 12.1 is a two-good (one output and one input) representation of the

profit maximization problem.

12.2 The Envelope Theorem

Before we move on, we will formally state the envelope theorem. Consider the
problem of maximizing a function f(z,q), where z is a vector of endogenous

variables and ¢ is a vector of exogenous variables, under constraints:

max f(z; q) (12.1)

zeR”
s.t. g(z;9) =b

The value function of problem 12.1 is denoted v(q), that is, the value attained

by f(.) at a solution to problem 12.1. Suppose we are interested in knowing

the effect on v(.) of a small change in ¢q. Here, we will require that for values

of ¢ close to g, the solution to problem 12.1 is a differentiable function z(q).

By the chain rule, and by noting that v(q) = f(z(q); ¢), we have that:
dola) _ 0f(x(ara) | Of(xla)a) dil@)

12.2
dg 0q ox dq (12:2)
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But note that by the first-order conditions for unconstrained maximization

Of ((q); q)
Ox
Therefore, equation 12.2 simplifies to

@) _ 0fa(@)a)

dg dq

that we must have
=0.

The fact that x(q) is determined by maximizing the function f(.) has the
implication that in computing the first-order effects of changes in ¢ on the
maximum value, we can equally well assume that the maximizer will not

adjust. The only effect of any consequence is the direct effect.

Envelope Theorem  Assume that the value function, v(q),
is differentiable at G and that (M1, ..., A\y) are values of the La-
grange multipliers associated with the mazimizer solution x(q) at
q. Then

S

dv(q) _ 0f(x(q);q) 3 Amag(l’(ci);ci) '

dg; B 0g; 0q;

m=1

See MWG section M.L page 964-966 for the proof and additional detail.
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12.3 Comparative Statics Results

We can now obtain two comparative statics results that relate the profit

function to optimal production choices.

PRropPosITION 3: Comparative Statics  Assume that Y is

closed and satisfies free disposal. Then,

1. Hotelling’s Lemma: If y is singleton-valued in a neighborhood of p,
then m(-) is differentiable at p and:

8;(5) = yi(p).

2. If y(-) is singleton-valued and continuously differentiable, the matriz
Dpy(p) = D2m(p) is symmetric and positive semi-definite, with [Dyy(p)]p =
0.

Proof. (1) Notice that the condition that y is single-valued in a neighbor-
hood of p implies the conditions of the envelope theorem. Remember that
7(p) = max,ey p - y. Totally differentiation tells us that profits change both
because price changes and because the price change changes the optimal y

(the vector of inputs and outputs):

d_ﬂ—a_ﬂ+a_7T@— ()_|_a_ﬂ-@
dp  Op 8y8p_yp oy Op

But note that the first order conditions of the profit maximization problem

are g_z = 0. So if we are at an optimal y, the change in profits given by a
change in p will just equal the vector y(p). Therefore, it follows immediately

that On/0p; = yi(p). O

The first part of (2), namely that D27 (p) is symmetric and positive semi-

definite, follows from the convexity of 7. For the second part of (2), observe
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that since y(p) solves max,cy p - v, it follows that p solves max,cgn p - y(p').
The first-order optimality condition for that latter problem is [D,y(p)]p =
0. O

Q.E.D.

Hotelling’s lemma allows us to recover the firm’s choices from the profit func-
tion. The symmetry of the matrix D,y(p) is a subtle empirical implication
of optimization theory that was missed by economists working in a verbal
tradition. Historically, this conclusion was argued to be important evidence
that a mathematical approach to economic theory could lead to new insights

that would be missed by a merely verbal approach.
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Chapter 13

Cost Minimization with a Single
Output

13.1 Conditional Factor Demand and the Cost

Function

Suppose that the firm produces a single output whose quantity is denoted
by ¢. This firm uses inputs z and faces input prices w. Using the production

function notation, the firm’s cost minimization problem can be written as:

min w - 2
zERi

st.f(z) > ¢q

In our analysis of this problem, we will always assume that all input prices
are strictly positive: w > 0. As usual in our study of optimization problems,
two functions are of central interest. The first is the solution to the problem,
2(q,w). We refer to z(q, w) as the conditional factor demand to indicate that

it is conditional on a fixed level of output ¢. The second is the optimal value
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function. The optimal value function for this problem is:

c(qg,w)= min w-z,
(,w) {2:f(2)2q}
It is called the cost function gives the minimum cost at which output ¢ can

be produced.

If f(2) is differentiable and concave, we can use the Kuhn-Tucker method
to solve for the conditional factor demands. The Lagrangian for the cost

problem is:

A>0,u>0 =z

max minw -z — A[f(z) —q] — Zuzzl
i=1
The first-order conditions from the Lagrangian problem are:

)\%(Z) < w; with equality if z; > 0.
<

and of course the solution must satisfy the production constraint. f(z) > g¢.

Later, we will compare these first-order conditions to the ones arising from the
profit maximization problem. In the meantime, we record a few properties of
the cost function. (For a full recital, including properties of the conditional
factor demands, see MWG, Proposition 5.C.2.)

PROPOSITION 4: Properties of ¢(.)  The cost function ¢ has
the following properties:

1. ¢(+) is homogeneous of degree one in w
2. ¢(.) is increasing in q.
3. ¢(+) is a concave function of w.

4. If f(-) is concave, then c(-) is a convex function of q (i.e. marginal

costs are increasing in q).
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5. Shepard’s Lemma: If z(-) is single-valued, then c(-) is differentiable

with respect to w and

dc(q,w)

6. Ifz(-) is a differentiable function, then the matriz D,,2(q, w) = D2 c(q, w)

is symmetric and negative semi-definite, and D, z(w,q)w = 0.

Proof. (1) The cost function ¢(¢,w) is homogeneous of degree one in w:

c(q, A\w) = min,. p)>¢ AW - 2 = Amin,. ;> w - 2 = Ac(q, w).[

(2) The cost function ¢(g, w) is increasing in ¢. To show this consider ¢’ > ¢
and suppose that ¢(¢’, w) < ¢(q, w). But then because we have free disposal,
a less expensive way to produce ¢ would be to produce ¢’ and then throw
away (¢’ — q). The firm could, in this way, produce output ¢ for a cost of
c(q',w) < ¢(q, w). But this contradicts that ¢(q, w) is the cost at the solution

to the cost minimization problem. Therefore, ¢(q,w) is increasing in ¢. O

(3) Choose any two factor price vectors w and w’ and some ¢ € [0, 1],and
let w” = tw + (1 — t)w’. Let z be a solution to the firm’s cost minimization
problem at (¢, w”), then f(z) > ¢. If the firm was faced with input prices w
or w’, z could also be used to produce ¢, however, at these input prices, there
might be something better than z. Thus, ¢(q,w) < w-z and ¢(q,w") < w'- 2.
Therefore, tc(q, w)+(1—t)c(q,w’) < tw-z+(1—-t)w' -z = w" -z = ¢(¢,w") . O

(4) Left for you to prove. [J

(5) We know that
(g, w) = w- z(q,w).

Differentiating both sides with respect to w; gives:

de(q, w) 9zj(q, w)
ik ULAD I

J
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What this means is that if we raise the price of input ¢, the resulting change
in cost needed to produce output level ¢ comes from two terms. First, the
amount z; that the firm demanded before is now more expensive and second,
the firm will probably want to use less of input ¢ now that it is more expensive
and will also want to change the amounts of other inputs demanded (the firm
will want to use more of inputs that are substitutes for input ¢ and will want
to use less of inputs that are complements of input 7). The result that we
want is that this summation term is zero. Recall that z(¢,w) is the solution

of the cost minimization problem. The first-order condition for z; is

NE)

Zi

This still isn’t quite what we want, so consider the identity f(z(q,w)) = q.

If we differentiate both sides with respect to w; we get

0 f 0z( q,
8zj 8wZ

If we insert the first-order condition, we obtain

0z( q, B
)\Z 0wz t=0.

This is what we want. As long as A isn’t zero or infinite, Zj wj%x)j =0
and therefore,
0
%:U) = Zi(q, ’UJ) U
(6) Left for you to prove. [J
Q.E.D.
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13.2 Price Equals Marginal Cost Condition

Returning to our characterization of the firm’s problem, suppose the firm
solves the cost minimization problem for every ¢, giving it a cost function

¢(q,w). The profit maximization problem can then be seen as:
max pq — c(q, w).
q

This problem gives the famous first-order conditions:

_ Jc(q, w)

p aq Y

equating price and marginal cost. So profit maximization implies that the

correct shadow price is the market price for output p.

13.3 Profit Maximization with a Single Output

Consider the profit maximization problem when there is only a single output.
With a vector z = (z1, ..., zps) of inputs and a single output f(z), the profit

maximization problem can be simplified to:

max p - f(z) —w -z,

2€R’}
where p reflects the price of output and the vector w > 0 reflects the input
prices. Denote the maximizing solution by z(p,w). There may be multiple
solutions or no solution for some price vectors (p,w), but we will focus our
analysis on the cases where the solution is a singleton, in which case z(p, w)
denotes the factor demands at prices (p,w). If f(z) is differentiable and

concave, the factor demands (when they exist!) can be found by solving the
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first-order conditions: for all 7,

of(z
p% < w; with equality if z; > 0.
Zj
It is interesting to compare this solution to that of the cost minimization

problem. There, the first order conditions were that

0f(2)

8zi

A < w; with equality if z; > 0

Thus, with f concave, one can think of profit maximization as the special
case of cost minimization in which the shadow price of output is the market

price p. There is more to this account. From the envelope theorem, we have:

_ dc(q, w).

A
dq

Thus, at the solution to the cost minimization problem, the shadow value of

output A is exactly the marginal cost of production.

When f is concave, the approach based on first-order conditions is useful
for working examples and obtaining formula that can be used to compute
solutions numerically. The convexity assumption fails in several interesting
cases, such as ones where there are fixed costs of production or where the
production sets exhibits increasing returns. It turns out that comparative
statics conclusions are largely independent of convexity assumptions, so we
approach the problem of comparative statics using methods that do not rely

on convexity. The first result is an easy one that follows from the law of

supply.
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Chapter 14
Monotone Comparative Statics

This chapter examines how the firm’s optimal production choice (or in the
case of monopoly, price) changes for increases or decreases in exogenous pa-
rameters (usually prices). These techniques can be applied to a variety of
applications, however, because the consumer’s choice set is often not a lattice,

these techniques are not usually applied in consumer theory.

14.1 Supermodularity and Isotone Differences

DEFINITION: Join 2z =z Vy means z; = max{z;,y;}Vi=1,..., N

DEFINITION: Meet 2z =z Ay means z; = min{z;,y;}Vi=1,..., N

We will need to explicitly define > on RY. We will say that v > y if
Vi=1,..., N, z; > y;. This is a partial order, which is to say that (RY,>)

is a partially ordered set.

DEFINITION: Isotone in Differences A function f(x,w) is said to be
isotone (increasing) in differences if for 2/ > x, f(2', w)— f(x,w) is increasing

in w.
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Supermodular DEFINITION: Supermodular A function f : RY — R is supermodular
if Va,y € RY fz) + f(y) < flzAy)+ flaVy).

Now that we have these definitions, is is natural to consider the relationship

between these two concepts.

Question: Is there any difference between supermodularity and

isotone differences?

Answer: If f : R? — R, then the answer is no. However, in

general there is a difference. Consider the following function

f(x,y,2) = ryz — yz

This function satisfies isotone (increasing) differences in (z; v, 2),
but is not supermodular in (z,y,z). Supermodularity requires
isotone differences between every pair of variables. Notice that

for z < 1, yz has the wrong sign.

DEFINITION: Lattice A partially ordered set X is a lattice if Vz,y € X,
rVye Xandz Ay e X.

Note, this is very important because a function can only be supermodular if
it is defined over a lattice. This is why these techniques cannot always be

applied in consumer problems; the choice set is not usually a lattice.

Consider a function f(x;#) that depends on a vector of choice variables z
and a vector of exogenous parameters . Table 14.1 illustrates the definitions
of supermodularity and isotone (increasing) differences in a general and dif-

ferentiable setting (where f(.) is twice continuously differentiable).

110



Table 14.1: Supermodularity and Isotone Differences

14.2. THE TOPKIS MONOTONICITY THEOREM

Condition General Setting Differentiable Setting
Supermodular Vz,y € X and V0 € © amang >0 fori#j
in x flavy0)+ flz Ay 0) > f(a:0) + f(y;0)
Supermodular Ve X and V0,0 € © 833;]» >0fori#j
in 0 flx, 0V O0)+ f(x,0NO) > f(x;0) + f(z;0)
Isotone Differences Va' >z and VO > 0 90:00; >0V, g
n (.CL’,@) f(xluel)_f(x79/) Zf(x’,ﬁ)—f(ac,e)
Supermodular Y (z,0), (x 0)e X x0
n (x,0) fl(x,0) Vv (2,0")+ f((x,0) A (2,0)) All of the above
> fx:0) + f(=;6')

14.2 The Topkis Monotonicity Theorem

We will consider the general optimisation problem:

V()

= r;qg?({f(x,e) + g(I)}

where the function f(z,6) maps the space X x © to the real numbers R and

g(z) maps X to R. We will then define the correspondence:

2 (8;9) = argmax {(z,6) + g(x)}

to be the set of optimal choices given # and g. We want to examine whether

x*(0; g) is increasing or decreasing in 6.
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CHAPTER 14. MONOTONE COMPARATIVE STATICS

Topkis Monotonicity Theorem  Assume that X C R" is a
lattice and that © is a partially ordered set. If g(.) is supermodu-
lar, and if f(.) is supermodular in x and has isotone (increasing)

differences in (x;0), then
(05 9) > 2*(0;9) VO >0

that is, ©*(0; g) is nondecreasing in 0.

14.2.1 A Standard Example

Consider the following maximization problem:

max {pf(k,1) —wl —rk}
where we assume that output is increasing in both inputs and that capital
k and labor [ are substitutes, that is f;; < 0, so that increasing the usage of
one input reduces the marginal product of the other input. Assume in the
short run that capital is fixed and so the firm can only choose to vary labor.
Let
Qk, l;p,w,r) =pf (k1) —wl —rk

since k is fixed at k, the only choice variable is [. Since there is only one
control variable, Q(k, I; p, w, r) is supermodular in [. So, to apply the Topkis
Monotonicity Theorem, we need to show isotone differences. To do this, we
need to check that the cross partial derivatives between labor and each of
the parameters are non-negative.

o
ﬁ—pfl_w
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14.2. THE TOPKIS MONOTONICITY THEOREM

So now we check to see if the cross partials are non-negative:

9*Q

= >
dlop frz0
92
=0>
olor 020
920
Blow 20

So we cannot apply the Topkis Theorem. However, if we define a new pa-

rameter w = —w, then we can re-write the problem as:
Qk, l;p,@,7) = pf(k,1) + 0l — 1k

Now we have that

Gl =1>0

Alow -
So we have shown that Q(k, [; p, w, r) is supermodular in [ and has increasing
differences in (I;p), (I;7), and (I;w). Thus, by the Topkis Monotonicity

Theorem, I(p,@,r, k) is nondecreasing in p, r, and @w. Which means that

[(p,w,r, k) is nonincreasing in w.

14.2.2 Conditional Factor Demand and Prices

This last point in the example, that (p,@,, k) is nonincreasing in @, can
be shown to hold generally. Here we apply monotone comparative statics to

prove a result about how conditional factor demands will change with prices.

PROPOSITION 5: Vi, q, 2z(q,w) is nonincreasing in w;.

This proposition simply states that conditional factor demands are weakly
decreasing in own price. That is, if the price of an input goes up, the firm’s

demand for that input goes down.
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CHAPTER 14. MONOTONE COMPARATIVE STATICS

Proof. The traditional proof, and still the easiest, mimics the argument for
the law of supply. But rather than take the easy way out, this is a good chance
to illustrate the Topkis Theorem. Consider the firm’s cost minimization
problem

min w -z
{zer1|f(2)<q}

and let us consider maximizing the negative of the objective rather than mini-
mizing the objective. Now fix z; and let A(q, w; 2;), p(q, w; z;) and z_;(q, w; z;)
denote the optimal (Lagrangian minimizing) choices taking z; as fixed. It is
easy to see that changes in w; have no effect on these choices because z; is
fixed. The problem of finding the optimal conditional factor demand z; is

then to solve:

max —wj; - 2; + )\(wa—i; Zz) ) [f(% Z—z’(fbw—i; Zz)) - C.I] + Mz’(q, W—i; Zz) C 2

Zi

+ terms not depending on z;.

This problem has increasing differences in (z;, —w;). Applying Topkis’ Theo-
rem, we see that z;(¢, w) will be decreasing in w;. (Question: can you identify
conditions under which z;(¢, w) would also decrease in w; for j # ¢ — think

about complements and substitutes in production?)

Q.E.D.

14.2.3 Monopoly Example

Consider a monopolist who faces a fixed marginal cost of production ¢ and
demand given by the function D(p). The monopolist chooses the output
price p so as to maximise II(p, c) = (p — ¢)D(p). Since the objective function
is a function of only one control variable, it is trivially supermodular in p

(make sure that you know how to show this). However, what about increasing
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14.2. THE TOPKIS MONOTONICITY THEOREM

differences? -
W D'(p)(p —¢) + D(p)
011 ,

So whether the objective function in this form has increasing differences in
(p;¢) depends on the differentiability and shape of the demand function.
In most cases, when it exists, D’(p) < 0, so % > 0. However, we can
transform the problem so that no assumptions about the demand function
are necessary. Consider taking a logarithmic transformation of the objective
function. Since In(.) is an increasing function, the argument that maximises

II(p, ¢) also maximises In (II(p, ¢)), given below:

In (T1(p, ¢)) = In(p — ¢) + In(D(p))..

Then we get
dln(Il) 1 n D'(p)
d  p—c D(p)
2
o’In(ll) 1 >0

opoc  (p—c)?
As shown above, the objective function is supermodular in p and has in-
creasing differences in (p;c) and this result was obtained without making
any assumptions about the demand function. We have shown that the con-
clusion that price increases (is nondecreasing) for an increase in marginal

cost ¢ holds regardless of the properties of the demand function.
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Chapter 15
Complements and Substitutes

Informally, two inputs are called substitutes when an increase in the price of
one leads to an increase in input demand for the second and complements

when it leads to a decrease in input demand for the second. That is,

(9zi .
> (0 then we say that input 2; and z; are complements

Wi

if

822‘

wj

if < 0 then we say that input z; and z; are substitutes

Several things conspire to complicate this seemingly simple definition.

First, it is perfectly possible that the change in demand in response to a price
increase is not uniform; for example, the demand for input j may increase
as the price of input 7 increases from w; to w; and may then decrease as the
input price increases further to w/. Inputs i and j may be substitutes at

some prices and then may be complements at other prices.

Second, the response to a price increase can depend on which optimization
problem we are using to determine demand. Input demands might corre-
spond to the solution of a cost minimization problem in which output ¢ is

held constant, or from the long-run profit maximization, with all inputs and
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CHAPTER 15. COMPLEMENTS AND SUBSTITUTES

output free to vary, or a short-run profit maximization problem, with some

inputs fixed.

15.1 Profit Maximization Input Substitution

Let us consider the profit maximization problem for a single-output firm with

two inputs:
mzax{pf(zl, 29) —w -2}

If f(2) is differentiable, the demand function z(p, w) must satisfy the neces-

sary first-order conditions

pﬁf(zl(p, Wi, wz); Zz(p; wy, w2)

= w
821 !

af(?il (p, wt, 7~U2), 22(29, wy, wz) _
P 022 = Wa2.

To simplify the notation, we will normalize the output price to be one (p = 1).

Differentiating the first-order conditions with respect to w; we have

821 822 o
flla—m+f128—tz)1 =1
021 82’2 N
f210—wl+f228—wl = 0.

Differentiating with respect to wy we have

021 82’2 .
fH@—wg + f128—wg =0

821 822

— — = 1.
f218w2 + fo Dy
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15.2. COST MINIMIZATION INPUT SUBSTITUTION

For simplicity, we will write this in matrix form

i fie g—ﬁ 3—@ _ 1o .
far fao o Ln 01
fu fi

fa S
maximum, then we can solve for the matrix of first derivatives

1 (p; ) 1 (p; ) fll fl
0za(p,w 0za(p,w r r
ggl)l ) 2502 ) 21 22

If the Hessian matrix, [ ] , is invertible, that is, if we have a regular

The matrix on the left is known as the substitution matrix since it describes
how the firm substitutes one input for another as the factor prices change.
The second-order condition for profit maximization is that the Hessian matrix
is a symmetric negative definite matrix. The inverse of a symmetric negative
definite matrix is also a symmetric negative definite matrix. This means
that the substitution matrix is also symmetric and negative definite (how
does this relate to proposition 3?). This tells us that the firm’s demand for
input 7 when price j changes is equal to the change in the firm’s demand for

input 7 when price ¢ changes.

15.2 Cost Minimization Input Substitution

Now consider the firm’s cost minimization problem for a single-output firm
with two inputs
min  {wyz; + wezo} .
{=lf(2)>q}
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The first-order conditions are

f(zl(Q7w)7 22(q7w)) = q
)\af (zl(CI?w)v ZQ(Q>w)) = w
821 o !
af (21(Q>w)v Z2(Q>w)) _
A 022 = Wa.

1

Following the same approach as with profit maximization® and applying

Cramer’s rule, we obtain the following substitution matrix

O0z1(qw)  9z1(q,w) 13 —fife
Owy Owa _ H H
dz2(qw)  9z2(q,w) —fofs I :
ow1 Owa H H

In this two-input case, the sign of the cross price effect must be positive, that

is, # > 0.2 The two factors must be substitutes. This is special to the

IDifferentiating with respect to w; we find that

f 02 | 0f 02

821 8101 8228—’[1)1 =0
L[ 0= 9f Dm) Of oA _
022 dwy 021022 0w 0z Owy
2 2
0| L 0n O 0n) OF OA - _
029021 Owy  0z5 Own 0zy Ouwn

Using Cramer’s rule, we can solve for how the demand for input 2 changes for price 1:

0 —f1 0
det | —f1 —Afnn -1
022(q, w) —f2 —Afiz O

ow, 0 -5 —f2 >0
det | —f1 —Mfi1r —Afar
—fa —=Afiz —Afa
2
[ 0 -5 P }
where H =det | —f1 —Afi1r —Afar
—fa —=Afiz —Afa
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15.3. SUPERMODULARITY AND INPUT SUBSTITUTION

two-input case; if there are more factors of production, the cross-price effect

between any two of them can be positive or negative.

Question: Why is it that in the two-input cost minimization problem, the
inputs must be substitutes? Why do we not have this condition in the two-

input profit maximization problem?

15.3 Supermodularity and Input Substitution

However, in producer theory, there are perhaps even better® definitions of
substitutes and complements. Rather than focus on the choice behavior, that
is, how the firm’s choice of inputs z changes for a given input price change, we
could focus on the production function itself. Consider the question of how

does the marginal productivity of input i change as we change the amount

o (ory_ r
Zj aZZ N 02,82j -

If f;; > 0, then inputs 7 and j are complements, that is, if the firm increases

of input j:

the amount of input j that it uses, the marginal product of input 7 increases
and therefore the firm will demand more of input 7. If f;; < 0, then inputs
¢ and j are substitutes, that is, if the firm increases the amount of input j
that it uses, the marginal product of input ¢ decreases and therefore the firm

will demand less of input .

These definitions of input substitution are closely related to supermodularity.
If f(z) is differentiable, then saying that f(z) is supermodular in z is the
same as saying that f;; > 0 for all inputs ¢ # j. This notion of complements
implies that the inputs are complements in the profit maximization problem.

Proposition 6 shows this relationship for the profit maximization problem

3Better in the sense that here, the definition is based on the primitives (the production
function) and not on the firm’s behavior

121



CHAPTER 15. COMPLEMENTS AND SUBSTITUTES

with a single kind of output and all inputs free to vary. It tells us that,
under certain conditions, if f(z) is supermodular then % < 0 for all %
J

and j.

PROPOSITION 6 Restrict attention to the domain of price vec-
tors (p,w) € R upon which z(p,w) is singleton-valued. If f(2)
is increasing and supermodular (fi;(z) > 0), then z(p,w) is iso-
tone ("weakly increasing”) in p and antitone ("weakly decreas-

ing") in w.

Proof. Since f(-) is increasing and supermodular, the firm’s objective func-
tion p - f(2) — w - z is supermodular in (z,p). Also, the choice set R’} is a
sublattice. So by Topkis’ Monotonicity Theorem, z(p, w) must be increasing
in p. Similarly, the firm’s objective is also supermodular in in (z, —w;). So

z(p,w) is antitone in w;. O
Q.E.D.

The preceding proposition is easily extended to "short run" profit maximiza-
tion. Consider the problem in which some set of inputs S is held fixed at the
levels zg. Define z(p, w, zg) to be the solution to the firm’s profit maximiza-
tion problem given the extra constraint zg = xg. This additional constraint

defines a sublattice, so the original proof still applies.

Supermodularity is however stronger than the long-run price-theory notion of
complementary, because it implies the price theory concept not only for the
long-run problem but also for all possible short-run problems. It is stronger
in another way, as well: it characterizes the behavior of f even around choices

z that would never be justified by any price vector.

The next proposition asserts that when f is strictly concave, so each choice is
the unique optimum for some set of prices, then supermodularity is identical

to this profit maximization notion of complementarity.
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15.3. SUPERMODULARITY AND INPUT SUBSTITUTION

PROPOSITION 7 Suppose that f is increasing and strictly con-
cave. If for all S and xg, z(p,w,xg) is antitone in w, then f is

supermodular.

Proof. Left as an exercise. (Hint: Suppose that all but 2 inputs are fixed.

How does f vary in the remaining two inputs?)

Q.E.D

Note that by Topkis’s Monotonicity Theorem, if f is supermodular, then
z(p,w, xg) is antitone in w, for all S, even without the assumptions that f is
increasing and concave. So, the import of the proposition is that for the case
of an increasing concave production function f, inputs are complements in

the strong sense defined by the proposition if and only if f.is supermodular.

The substitutes case is similar for the two-input case, but subtler for the
general cases. Proposition 8 shows the relationship between supermodular-
ity and substitutes for the two-input case. Proposition 9 gives the relation-
ship between submodularity and complements for the multiple-input case.
Note that Proposition 8 concerns z(p,w), the solution to the single-output
profit maximization problem. Because there are only two inputs, z(q,w)

and 25(q, w) are substitutes regardless of our assumptions on f(z).

PROPOSITION 8 Restrict attention to the domain of price vec-
tors (p,w) upon which z(p,w) is singleton-valued and suppose
there are just two inputs. If — f(z) is supermodular, then z(p,w)
is everywhere non-decreasing in wy and z(p,w) is everywhere

non-decreasing in wy.

~

Proof. With two inputs, define f(z1,—29) = f(2). If —f is supermod-
ular, then the function f is also supermodular. The conclusion then fol-
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lows directly by applying Topkis’s Monotonicity Theorem to the problem:

~

maxmlzomgo pf(:l,’) — W1 —+ WoT2. O
Q.E.D.

For the case of multiple inputs, one can obtain characterizations of comple-

ments using the indirect profit function or the cost function, as follows.

PROPOSITION 9 Suppose that the cost function c(q,w) is con-
tinuously differentiable. Then, the following two are equivalent:
(1) for all i # j and all w_; and q, z;(q, w) is non-increasing in

wj, and (2) for all q, c(q,w) is submodular in —w.

Proof. By Shepard’s lemma, z;(q, w) = (%ic(q, w). Consider differentiating
both sides with respect to w;.

azi(q7w) _ 820(q,w)
8wj N 8w28wj

From here is is clear that z;(¢, w) is always non-increasing in w; if and only

if 7%255?);2) < 0, that is if ¢(¢g, w) is submodular in w. OJ
Q.E.D.

Proposition 10 is a parallel proposition for z(p, w), the solution to the firm’s
profit maximization problem. It is proved similarly, using Hotelling’s lemma,

in place of Shepard’s lemma.

PROPOSITION 10  Suppose that the profit function m(p, w) is
continuously differentiable. Then, the following two are equiva-
lent: (1) for alli # j and all w_; and p, z;(p,w) is non-increasing

in w;, and (2) for all p, ©(p,w) is supermodular in w.

124



15.3. SUPERMODULARITY AND INPUT SUBSTITUTION

Proof. By Hotelling’s Lemma, —z;(p,w) = (%iw(p, w). Consider differenti-

ating both sides with respect to wj.

azz(pv w) _ _8277-(]% w)

awj n 0wl awj

From here is is clear that z;(p, w) is always non-increasing in w; if and only

if a;gfg;z) > 0, that is if 7(p, w) is supermodular in w. O

Q.E.D.
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Chapter 16

The Short-Run and Long-Run

While not treating time explicitly, the neoclassical theory of the firm typically
distinguishes between the long-run, a length of time over which the firm has
the opportunity to adjust all factors of production, and the short-run, during

which time some factors may be difficult or impossible to adjust.

In his Foundations of Economic Analysis (1947), Samuelson suggested that a
firm would react more to input price changes in the long-run than in the short-
run, because it has more inputs that it can adjust. This view still persists in
some economics texts.! Samuelson called this effect the LeChatelier principle
and argued that it also illuminates how war-time rationing makes demand
for non-rationed goods less elastic. Assuming that the optimal production
choice y(p) is differentiable, he proved that the principle holds for sufficiently
small price changes in a neighborhood of the long-run price. The relation
between long and short run effects can be quite important, because data
about the short-run effects of policies are frequently used to forecast their

long-run effects, and such forecasts can influence policymakers.

!For example, Varian (1992) writes: "It seems plausible that the firm will respond more
to a price change in the long run since, by definition, it has more factors to adjust in the
long run than in the short run. This intuitive proposition can be proved rigorously."
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We begin our analysis with an example to prove that the Samuelson-LeChatelier
principle does not apply to large price changes. Consider the production set
Y = {(0,0,0), (1,—2,0), (1,—1,—1)} in which two inputs, goods 2 and 3,
are used to produce good 1. The set includes the possibilities that the firm
can produce a unit of output either by using two units of good 2 or by using
one unit of each kind of input. The third and last possibility is that the firm

can use no inputs and produce nothing.

Suppose long-run prices are given initially by p = (2,.7,.8). At the corre-
sponding initial long-run optimum, the firm achieves its maximum profit of
0.6 by choosing the point x%(p) = (1,—2,0) € Y. The superscript desig-
nates this as a long-run choice—one that treats all points in the set Y as feasi-
ble. Suppose that the use of good 3 is fixed in the short run and that the price
of good 2 rises to 1.1, so the new price vector is p’ = (2, 1.1, .8). Since the firm
cannot immediately change its use of good 3, it must choose between its cur-
rent plan (1,—2,0) incurring a loss (profit = —0.2) or switching to (0,0, 0)
(profit = 0). The latter choice maximizes its profit, so z°F(p’, p) = (0,0, 0),
where the notation indicates that this is the firm’s profit-maximizing short-
run choice when current prices are p’ but fixed inputs were chosen when prices
were p. The firm’s long run choice at price vector p' is x/%(p') = (1, -1, —1).
In this example, when the price of the first input rises, the demand for good
2 changes in the short-run from z{%(p) = —2 to z5%(p',p) = 0, but then
recovers in the long-run to z2%(p’) = —1. So, the short-run change is larger

than the long-run change, contrary to the Samuelsonian conclusion.

Although the three-point production set may seem unusual, the example can
be modified to make Y convex and smooth. The first step is to replace Y by
its convex hull Y (the triangle with vertexes at the three points in the original
set Y'). The choices from Y are the same as those from Y, so that gives us a
convex model of the same choices. One can further expand Y by adding free
disposal without changing the preceding calculations. For a similar example

with a strictly convex production set having a smoothly curved boundary,
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one can replace Y by the set Y, C {y € R?|(3z € Y)|y—z| < e}, where e > 0.
For ¢ small, the firm’s profit-maximizing choices from }A/; differ little from its
profit-maximizing choices from Y. In particular, the long-run response to

the price change will remain smaller than the short-run response.

There is an interesting set of economic models in which it is always true that
long-run responses to price changes are larger than short run responses. In-
tuitively, these are models in which a "positive feedbacks" argument applies,

as follows.

Suppose that output is not fixed and that there are two inputs, capital and
labor, which are substitutes. Suppose that capital is fixed in the short-run.
By the law of demand, if the wage increases, the firm will use less labor both
in the short-run and in the long-run. Since the two inputs are substitutes,
the increased wage implies an increased use of capital in the long-run. Since
fri <0 for substitutes, the additional capital used in the long-run will reduce
the marginal product of labor, so in the long-run the firm will use still less
labor. In summary, the long-run effect is larger than the short-run effect
because, in the short-run the firm responds only to a higher wage, but in the
long-run, it responds both to a higher wage and to an increased capital stock
that reduces marginal product of labor. Graphically, the additional effect in

this example can be represented by a positive feedback loop.

Wage 1@ =Ll Labor
Tk—]1 L1—=Tk
Capital
Figure 16.1: Positive Feedback Loop

Next, suppose that the two inputs, capital and labor, are complements.
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Again, by the law of demand, if the wage increases, the firm will use less
labor input, both in the short-run and in the long-run. Since the inputs are
complements, the increased wage implies a reduced use of capital in the long
run. Since fi; > 0 for complements, the reduced capital used in the long-run
will reduce the marginal product of labor, so in the long-run the firm will

use still less labor. Again, we have a positive feedback loop.

Wagew. Labor
1 kE—]1 11—k
Capital

Figure 16.2: Positive Feedback Loop

The general positive feedbacks argument for two inputs (due to Milgrom and
Roberts (1996)) goes as follows. Let X and Y be sublattices (for example,
let X =Y =R). Define:

2(y,t) = argmax g(z, y, 1)

and

y(t) = argmax g(z(y, t),y,t).
yey
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PROPOSITION 11: Suppose that g : X x Y x R — R s super-
modular, that t' > t, and that the mazximizers described below are

unique for the parameter values t and t'. Then:

w(y(t),t') = x(y(t), t') = =(y(t), 1)

and
z(y(t'),t") > z(y(t'),t) > z(y(t),?)

Proof. By Topkis’ Theorem, the function y(¢) is isotone ("weakly increas-
ing"). Then, since ¢ > t, y(t') > y(t). Similarly, by Topkis’s Theorem, the
function z(y,t) is isotone. The claims in the theorems follow immediately
from that and the inequalities ¢’ > ¢ and y(t') > y(t). O

Q.E.D.

Now let’s apply the result. Let x be labor input, and y capital input, and let

t = —w,, where w, is the price of labor. The firm’s objective is to maximize:

g(z,y,t) =pf(x,y) — wex — wyy.

If capital and labor are "complements" in the sense that f,, > 0, then
the firm’s objective is supermodular in (x,y, —w,), because it verifies all the
pairwise supermodularity conditions. Similarly, if capital and labor are "sub-
stitutes" in the sense that f,, < 0, then the firm’s objective is supermodular
in (z, —y, —w,). We then have the LeChatelier Principle.

131



CHAPTER 16. THE SHORT-RUN AND LONG-RUN

LeChatelier Principle  Suppose production is given by f(k,[)
where either fy(k,1) > 0 for all (k,1) or fu(k,l) < 0 for all
(k,1). Then if the wage w increases (decreases), the firm’s labor
demand will decrease (increase), and the decrease (increase) will

be larger in the long-run than in the short-run.

Returning to our example above, consider the following three price vectors.
The first two are p and p’ as defined above and the third is p” = (2,1.1,1.1).
In the example, the inputs act like substitutes when prices change from p to
p’ (the long-run input demand for good 3 rises with this increase in the price
of good 2) but they act like complements when prices change from p’ to p”
(the long-run input demand for good 2 falls with this increase in the price
of good 3). It is this non-uniformity that enables the example to contradict
the conclusion of the LeChatelier principle.
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Chapter 17
Recovering the Production Set

We now turn to a set of questions concerning what can be learned from a set

of observations of the form {(p1,v1), ..., (Pn,yn)}. The questions are:

1. Is the set of observations consistent with profit maximization at fixed

prices from some production set?
2. What can we infer about the underlying production set?

3. If the data set is sufficiently large, can we recover the entire production

set? The production function?

For the first question, we can certainly infer from these observations that
{y1, -, yn} C Y. So, the firm’s choices could be profit-maximizing only if for
all n,m, pn + (Yn — ym) > 0. If this inequality failed, then the choice made
at prices p, were less profitable than choosing the feasible alternative y,,.!
Conversely, if all those inequalities are satisfied, then if the production set is

Y = {vi,...,yn}, then the choice is profit-maximizing for every price vector

!Notice that if this inequality fails, that does not establish that the firm is not a profit
maximizer. An alternative explanation is that the firm is not a price taker.
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pn- These inequalities, then, characterize a dataset that is consistent with

profit maximization.

For the second question, we can certainly infer that Y/ = {y;,...,y,} C Y.
We may call Y the inner bound on the production set. If we assume that the
firm is maximizing profits, then the production set can only contain points for
which the profits at prices p,, are no more than p, -y,, thatis, Y C {y|p, -y <
P Yn} = YO, where YO is the outer bound on Y. Thus, Y/ C Y C Y©.

If we assume that the production set satisfies free disposal, we can expand

that inner bound. The free disposal inner bound is:

Yip = {yl(@n)y < yn}.

The condition of free disposal implies that Y, C Y. With that extra as-

sumption, the answer to the second question is Y., C Y C Y©.

The third question, about large data sets is interpreted as supposing that we
know the entire decision function y(p). That implies that we know 7(p) be-
cause for each p, taking any y € y(p), 7(p) = p-y. By a previous proposition,
we know that if YV is closed and convex and has the free disposal property,
then Y = {y € R" : p-y < 7(p) for all p > 0}. So, in that case, the
production set coincides with its outer bound Y = Y©. Moreover, by the
supporting hyperplane theorem, every point on the boundary of Y is chosen
for some price vector, so in the limit, the inner bound also coincides with the
production set: Y = Y. So, when Y is closed and convex and satisfies free
disposal, the inner and outer bounds derived from y(p) coincide with each
other-Y! = Y?-and it follows that we can recover Y from the function y(p)

in that case.

Knowledge of the correspondence y(p), however, is not sufficient when the
production set Y when the set is not convex, even if we make the usual (and
relatively innocuous) assumptions that Y is closed and satisfies free disposal.

The outer bound, Y, being an intersection of closed half-spaces, is always
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convex, so it can’t coincide with Y when Y is not convex. Hence, it cannot
correspond to the inner bound, either. There is insufficient information in
y(p) to decide whether the points in the difference set Y© — Y are in the set
Y.

When the production set is convex and production is described by a pro-
duction function, the possibility of recovering the production set can take a

particularly nice form.

PROPOSITION 12: Duality of Profit and Production Functions Sup-
pose that f(x) is a production function, that 7(p) is the associated
profit function 7(p) = max, f(z) —p-x, where the price of output

is normalized to one. If f is concave, then

() = minr(p) +p

Proof. By definition, for all z,p, n(p) > f(z) —p-x,s0 f(z) <7(p)+p-x
for all p. It follows that f(z) < min,n(p) +p- .

Assuming that f is concave, we now show the reverse inequality. Sine f is
concave, then the production set Y = {(y,—x)|ly < f(x)} is convex. So,
by the supporting hyperplane theorem, there exists some hyperplane that
supports Y at the boundary point (f(x), —z). That is, there is some p such
that for all 2/, f(2') —p-2’ < f(z) —p- 2. Then, n(p) = f(x) —p-x, so
f(z) =m(p) + p-z. Hence, f(x) > min, 7(p) +p-z. O

Q.E.D.

We have already seen that we cannot recover the production set or pro-
duction function for the non-convex case, because there is necessarily a gap
between the inner and outer estimates of the set. Hence, the preceding re-

sults give a complete answer to the question of when the production set can
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be recovered from sufficiently rich data about the choices of a competitive

profit-maximizing firm.
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