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Payday loans are small short-term loans that a borrower must repay or renew on his/her next payday. In
states where payday lending is legal, many terms of these loans are regulated, ostensibly to protect the
consumer from excessively burdensome lending practices.

The existing literature on payday loans has primarily focused on estimating causal effects of access
to those loans, including work by Morse (2011), Skiba and Tobacman (2009) and Melzer (2011). Using
individual-level administrative records on borrowers in 38 states from an online payday lender, this
paper departs from past work by estimating how payday loan regulation affects borrower behavior,
specifically how much they choose to borrow, how many times they choose to renew the loan, and
whether or not they choose to default. State-level variation in maximum loan sizes and renewal caps are
used as exclusion restrictions for identification purposes. We pay particular attention to the calculation
of posterior predictive distributions that summarize the sensitivities of borrower behavior to various
changes in state-level policies.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Payday loans are short-term loans made to individuals that
are either repaid or renewed on the borrower’s next payday.
These loans typically carry a 14-day loan term and average
approximately $300. Although the amount of interest paid on such
a loan is often reasonably small (given the small loan principals),
interest rates charged on such loans are typically very high, with
Annual Percentage Rates (APRs) often in excess of 400%. Given
the magnitudes of these rates, the practice of payday lending is
regarded as predatory by many, and the industry has come under
increased scrutiny of late, with some states effectively outlawing
payday lending through existing usury legislation.1

In states where online payday lending is legal, many terms of
the loan are regulated. States impose limits on the interest rate
charged, the maximum amount that can be borrowed, the length
of the loan and what penalties can be imposed on borrowers who
default. Averaged across different states, a typical interest rate
limit is approximately 15% for a two-week loan, meaning that the

✩ We thank seminar participants at the University of Chicago and the University
of Cincinnati, the editors of this volume and three anonymous referees for
comments that substantially improved this paper. All errors are, of course, our own.
∗ Corresponding author.

E-mail addresses:mli3@buffalo.edu (M. Li), mumford@purdue.edu
(K.J. Mumford), jltobias@purdue.edu (J.L. Tobias).
1 In Georgia, for example, payday lending is effectively prohibited through

existing legislation regarding permissible interest rates on small loans.

borrower must pay $15 in interest on a $100 loan at the end of
the two week period. States regulate if a borrower is allowed to
renew at the next payday and extend the loan period and, if so,
how many times a borrower is allowed to renew. Borrowers that
renew their loan pay the interest accumulated to that point and
may also choose to pay down some of the principal.

How these state policies affect borrowers’ behavior is not
well understood in the literature and in this paper we aim to
better understand these relationships. For example, if a state were
to reduce the maximum interest rate that can be charged, will
borrowers respond by paying back their loans more quickly or
will the lower interest rate cause them to delay repayment? Is
it possible that payday lenders may not strongly object to the
setting of lower interest rates if it turns out that lower rates
are associated with lower probabilities of default, increased loan
amounts and longer loan durations? In this paper we seek to
address these and other questions by modeling the borrowers’
choices of loan amount, loan length, and whether or not to default,
and determining how these depend on state-level policies. The
data we employ in our analysis come from a single online payday
lender with loans in 38 states over a fairly short period of time.

The economic literature on payday lending has primarily
focused on estimating causal effects of access to payday loans
on various outcomes, including work by Morse (2011), Skiba and
Tobacman (2009), and Melzer (2011). The evidence produced by
these studies is mixed, with Morse (2011) finding that access to
payday loans decreases foreclosures while Skiba and Tobacman
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(2009) find that access to payday loans increases the likelihood of
bankruptcy. In a similar spirit of questioning the value of payday
lending, Melzer (2011) finds that access to payday loans decreases
the borrower’s likelihood of payingmortgage, rent, and utility bills.
Other papers including Flannery and Samolyk (2005) and Skiba
and Tobacman (2007) have been concerned with reconciling how
payday lenders that charge interest rates of 15% for a two-week
loan (391% APR) make only normal levels of profit with annual
returns on equity around 10%. They find that the large number of
borrowerswho default on their loans is themajor factor that drives
down the average return on equity for payday lenders.

Although the references listed above examine potential benefits
or pitfalls of the payday loan industry, few studies in this literature
have specifically examined the impact of payday loan regulation
on the behavior of borrowers. Skiba and Tobacman (2008), perhaps
the closest study to the one performed here, estimate a structural
model of repayment and default behavior in order to distinguish
between alternative models of borrower preferences. They find
that quasi-hyperbolic discounting models perform better than
exponential discountingmodels. However, they neglect to perform
model simulations under alternative policies and thus do not
comment on how changes to payday loan regulation would likely
influence the types of borrower behavior that they consider.

In this paper we use cross-state differences in payday loan
regulation to identify the effects of these policies on borrower
behavior. The state-level policies we consider are the maximum
interest rate, themaximum loan amount, themaximumnumber of
times a loan can be renewed, and the penalty that can be imposed
on those who default. We estimate the effects of these policies on
the borrower’s decisions of howmuch to borrow, how long to keep
the loan, and whether or not to default.

The model we employ to accomplish this goal is a three-
equation nonlinear triangular simultaneous equation model. Our
specification flexibly represents the latent outcomes as being
generated by a finite mixture of Gaussian distributions and the
model is fit using MCMC methods. We uncover a number of
relationships, finding, for example, that interest rate reductions
lead to longer loan durations and lower probabilities of default
while reductions in the maximum amount that can be borrowed
reduce the number of times loans are renewed and also lower the
probability of default.

Although our paper is applied in nature, the general theme of
Bayesian modeling of SEMs is consistent with several influential
works of Herman van Dijk (e.g., Kloek and van Dijk, 1978,
Zellner et al., 1988 and Kleibergen and van Dijk, 1998, among
others), whomwe honor here with this volume. Our work, though
investigating a very different question, also shares the same
general structure and strategy for posterior simulation as a number
of other applied Bayesian systems of latent equations analyses,
including Li (1998), Geweke et al. (2003), Munkin and Trivedi
(2003, 2008) and Deb et al. (2006), to name a few.

The outline of this paper is as follows. We describe the data
in Section 2, while the econometric model is introduced and
discussed in Section 3. Model diagnostics and empirical results are
provided in Section 4 and the paper concludes with a summary in
Section 5.

2. Data

The data come from a single online payday loan lender who
began making online loans in the fall of 2006. After approximately
two and a half years of operation and issuing approximately
2500 loans, our lender promptly stopped online advertising. This
substantially reduced the number of new loans and provided us
with an opportunity to see the existing loans through to repayment

Table 1
State-level payday loan policies.

Panel A: maximum interest rate

Interest rate Number of loans Percent of loans

0.1 199 8.57
0.15 773 33.28
0.155 79 3.40
0.1675 34 1.46
0.175 37 1.59
0.18 261 11.24
0.2 131 5.64
0.23 809 34.83

Panel B: maximum loan amount

Max amount Number of loans Percent of loans

300 245 10.55
350 55 2.37
400 12 0.52
500 620 26.69
550 47 2.02
600 129 5.55
700 14 0.60
800 119 5.12
900 56 2.41

1000 1026 44.17

or default without new loans being added to the data. Of the 2500
loans about 700 ended in default.

Borrowers likely learned of our online lender by doing an online
search of the term ‘‘payday loan’’ or ‘‘quick loan’’. They start the
loan process by going to the lender’s website and selecting their
state of residence. The borrower is then directed to an online
form to specify the desired amount of the loan, the date of the
next payday, income, contact information, and employer contact
information. The form states that the borrower must be employed
with the same company for 3 consecutive months and must have
take-home pay of at least $1000 per month (approximately full-
time work at the minimum wage) to be approved. In practice,
however, our lender generally made no effort to contact the
employer or to verify the reported income.2

Borrowers came from 38 states with substantial heterogeneity
in payday loan regulation. As shown in Table 1, the interest rate
ranged from 10% to 23% depending on the state of residence. The
lender applied a 23% interest rate (600% APR) in states that set a
maximum rate higher than 23% and in states with no regulation
limiting the interest rate. The maximum amount that can be
borrowed ranged from $300 to $1000 (also shown in Table 1 with
the lender’s $1000 cap applying in states that have a higher limit
or have no limit to the amount that can be borrowed).

When a payday loan is made, it is due on the next payday.
About 80% of the borrowers in the data are paid twice a month
or every two weeks and generally have a loan length of about 14
days. Borrowers with a longer period of time between paydays are
given longer to repay the loan without having to pay additional
interest charges. The interest rates reported in Table 1 are for the
loan period, regardless of its length. Borrowers who pay back the
full principal within 3 days (or 4 in some states) have their loan
canceled and do not owe any interest. Once this grace period has
been exceeded, borrowers do not receive a reduction in interest
charged for early repayment.

The lender will allow the borrower to renew the loan up to
five times if this is allowed by the state. To renew the loan, the

2 The borrower’s name, social security number, address, and checking account
number were checked against a national database in order to reject applications
from those who have a history of defaulting on payday loans. The lender accepted
nearly every application that passed this check and did not run a separate credit
check or use the self-reported income and employment information in order to
differentiate applications.
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borrower must pay at least the amount of interest due and can
choose to pay more to reduce future interest costs. In 18 of the
states where the lender made loans, state law does not allow
borrowers to renew loans in this way. However, online lenders
often provide the borrower with a new loan to cover paying off
the principal and in this way effectively renew the loan. We see
evidence of this practice in the data and categorize it as a renewal
of the existing loan, but suspect that the additional complication
causedbyneeding to take out a new loan to pay off the old loanmay
have an effect on borrower behavior. In 7 of the 20 states where
payday loan renewals are allowed, the state’s limit on the number
of renewals is less than five.

If a borrower defaults on the loan, the payday lender makes
efforts to contact the borrower to encourage loan repayment.
If these efforts are unsuccessful, the lender sells the loan to a
collection agency. Payday loan default is not a criminal offense
(although collection agencies sometimes claim that it is), andmost
states have placed limits on the amount of collection and attorney
fees that can be collected in addition to the amount owed on the
loan. The additional collection fee may have an influence on the
individual’s decision to default on the loan.

Of those loans that end in default, 55% never make any
payments or renew the loan by paying the interest; we refer to this
as immediate default. The remaining 45% make some payments
before defaulting. While surprising, this is confirmed by Skiba and
Tobacman (2008) who find that defaulting borrowers have on
average repaid an amount equal to 90% of the loan’s principal at
the time they default.

For each loan we observe the amount of the loan, the interest
rate, the term length, the number of renewals, if the loan ended in
default, and the state of residence which allows us to match each
loan to the state’s maximum loan amount, number of renewals
allowed, and default penalties. Unfortunately, the lender did not
ask borrowers for demographic information like gender and race
and did not retain the self-reported age and income information
once a loan was made. However, we were able to obtain a mailing
address for each borrower and match this with available public
records to obtain the estimated monthly rent associated with the
address.3 Rent is a good proxy for the financial resources of an
individual as rent is a major component of consumption and is
highly correlated with income. We suspect that it is likely a better
measure of financial resources than the unverified income that
applicants report to the lender in order to qualify for a loan. We
also used the address to link each loan to the median household
income, average education level, and fraction of the population
that are Black and Hispanic in the borrower’s zip code.

Summary statistics for the data used in the analysis are reported
in Table 2. For loans where the mailing address was not for the
borrower’s home (usually a PO box or work address), we were
unable to obtain the monthly rent and drop those loans for this
analysis. This resulted in a loss of only about 5% of the observations.
Another 2% of the observations were dropped from the analysis
because of other missing or miscoded values, leaving us withmore
than 2300 observations.

3. The model

In our analysis of the payday loan data, we imagine that the
agent makes the following sequence of choices: First, she decides

3 The estimated rent for each borrower comes from Zillow (www.zillow.com).
This monthly rent estimate is computed from public property data and local
properties listed for rent.

Table 2
Summary statistics.

Variable Obs Mean Std. dev. Min. Max.

Interest rate 2323 0.1806 0.0420 0.10 0.23
Loan amount 2323 $302.9 $161.5 $39.4 $1000
Maximum amount 2323 $728.5 $269.0 $300 $1000
Default 2323 0.2755 0.4469 0 1
Immediate default 2323 0.1550 0.3620 0 1
Default penalty 2323 $93.0 $79.6 $15 $330
Rent 2323 $967.4 $362.1 $367 $2388
Loan term 2323 15.52 4.74 3 31
Loan renewals 1963 2.434 1.834 0 5

Notes: The loan renewals is reported for those who are not immediate defaulters.

on the loan amount.4 Second, conditioned on a loan amount, the
agent decides how many times to renew the loan (that is, to make
an interest payment and extend the duration of the loan) as well
as whether or not to default. As stated in the previous section, we
observe both a sizeable fraction of ‘‘immediate’’ defaulters (who
never make any repayment whatsoever and thus may take out
the loan with every intention of defaulting) as well as those who
make several interest payments, only to eventually default. We
construct our model to capture the existence of both types of
defaulters and later will perform diagnostic checking to verify that
our specification is able to reproduce these distinct patterns of
behavior that are present in the data.

Given this assumed decision-making structure, the model we
employ is a nonlinear triangular simultaneous equation model
(SEM).5 To allow for flexibility in modeling the distribution of
our outcomes, we employ a finite Gaussian mixture model. We
represent this below in the traditional way by augmenting the
parameter space to include a series of component labeling vari-
ables ci ∈ {1, 2, . . . ,G}, for i = 1, 2, . . . , n, that denote component
membership (that is, if ci = g then individual i ‘‘belongs to’’ the gth
component of the mixture).

Conditioned on the values of these component labels, we ex-
press our model as:

LogAmt∗i = β0ci + β1 Ratei + β2 Termi + β3 LogRent i
+β4 LogStateMAX i + ϵi (1)

LogAmt i = min{LogAmt∗i , LogStateMAX i} (2)

Renewals∗i = γ0ci + γ1 LogAmt i + γ2 Ratei + γ3 Termi
+ γ4 LogRent i + γ5 StateCapi
+ γ6 NoStateCapi + ui (3)

Renewalsi =

5
j=0

j × I(δj+1 < Renewals∗i ≤ δj+2) (4)

Default∗i = θ0ci + θ1 LogAmt i + θ2I(Renewalsi = 1)
+ θ3I(Renewalsi = 2)+ θ4I(Renewalsi = 3)
+ θ5I(Renewalsi = 4)+ θ6I(Renewalsi = 5)
+ θ7 Ratei + θ8 Termi + θ9 LogRent i
+ θ10 LogStatePenaltyi + θ11 StatuteLimit i + vi (5)

Default i = I(Default∗i > 0). (6)

4 Morse (2011), citing a survey by Elliehausen and Lawrence (2001), reports that
approximately 67% of payday loan recipients borrow in order to cover emergency
expenses. This finding suggests that the amount of the loan is indeed the initial
choice made by the agent, and for many borrowers, the amount of the loan is
determined by the realization of somenegative unexpected shock, such as amedical
expense, auto repair, or larger than expected utility bill.
5 Admittedly, the assumption of triangularity may not be completely realistic

and a richer pattern of dependence may offer an improved model. We employ the
structure in Eqs. (1)–(6) as it seems to capture the salient features of the decision-
making process while also simplifying the posterior computations.
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For the error terms, we specify
ϵi
ui
vi

 ·, ci ind
∼ N

0
0
0


,Σci =


σϵϵci σϵuci σϵvci
σuϵci σuuci σuvci
σvϵci σvuci σvvci = 1


(7)

and the conditional prior probability that i will be drawn from the
gth component of the mixture is denoted as ηg :

Pr(ci = g|η) = ηg , for g = 1, 2, . . . ,G and
G

g=1

ηg = 1. (8)

In Eqs. (1)–(7), we allow intercepts and covariance matrices
to differ across mixture components, but impose equality of
the regression slopes across components of the mixture. This
restriction aids in interpreting our results, mitigates concerns
regarding identification (as discussed in greater depth below) and
also introduces parsimony in the number of parameters that are
employed. By allowing intercepts and covariance matrices to vary
across the components, however, we introduce a great deal of
flexibility to the analysis. In the following section we will examine
how well this specification is able to capture key features of our
data.

Eqs. (1)–(2) describe the amount of the loan taken by the
individual (LogAmt), with the latent loan amount potentially
depending on the charged interest rate (Rate), the length of time
between borrower paydays (denoted Term, which is typically 14
since most individuals are paid biweekly), the monthly rent paid
by the individual (LogRent) and the established state maximum
amount (LogStateMax).

Although it may seem inappropriate at first, we model the
interest rate as exogenous. In this analysis, the interest rate of
the loan is not determined by any type of negotiation between
lender and borrower, or assessment by the lender of the agent’s
(unobservable) creditworthiness. Instead, our lender simply sets
the interest rate equal to the state-imposed maximum, which is
assumed to be exogenous.6 The observed amount borrowed in (2)
is then set equal to the smaller of the desired latent amount and
the maximum loan amount that is established by the state.

In (1) we additionally include LogStateMax as an explanatory
variable, allowing for the possibility that state loan caps can
influence outcomes beyond just support restrictions. When
completing the online loan application, the agent is informed of
the maximum amount that can be borrowed in their state of
residence. The appearance of such information may affect the
borrower’s amount decision independently of the bounds on the
loan amount, and we include the (log) state maximum as a
covariate to allow for this possibility. Finally the variable Term is
added to capture possible heterogeneity between biweekly and
monthly paid individuals and possible differences in borrowing
behaviors across these groups.

Eqs. (3)–(4) model the number of times that the agent renews
the loan, with the latent renewals variable potentially depending
on the loan amount, interest rate, loan term, monthly rent
paid by the agent, and state policies regarding the number of
permissible renewals (StateCap,NoStateCap). As briefly discussed
in the previous section, the state-set renewal cap is not really
binding in practice (and certainly does not bind within our data),
as the agent can circumvent the state cap by simply taking out
a new loan to effectively extend the payoff deadline. Since some
states in our data do not have a cap on the maximum number of
loan renewals, the variable StateCap is not well-defined in such

6 Our lender, however, does impose a rate of 0.23 as a universal maximum: if the
state-imposed maximum exceeds 23%, the lender still sets the interest rate equal
to 0.23.

cases. Our practice for these states is to simply set the state cap
variable equal to zero and to define and separately include a
dummy variable for the lack of a state renewal cap (NoStateCap).

Renewals ismodeled as an ordinal response,with values ranging
from 0 to 5, where a value of 0, for example, indicates that a
non-defaulting agent will pay off the loan plus interest charges
at the next payday. Our lender limits renewals at five, and thus
we truncate the value of Renewals at this upper limit. The linkage
between latent renewals and the observed renewals outcome is
described by (4), with δ denoting a vector of estimable cutpoint
parameters.

Our approach for identifying and normalizing these cutpoints
departs slightly from what is most commonly done in the liter-
ature. We begin with the usual restrictions, namely: δ1 = −∞,
δ2 = 0 and δ7 = ∞. However, instead of estimating the remaining
cutpoint parameters in the traditional way, we restrict the largest
unknown cutpoint, δ6, to equal unity and commensurate with this,
do not restrict the variance of the error in (3) to equal unity. This
equivalent specification can be derived by first taking the latent
equation in (3), multiplying it by 1/δ6, and then interpreting the
variance of the transformed error as the squared reciprocal of
the largest unknown cutpoint. This produces an observationally
equivalent ordinal model, as noted by Nandram and Chen (1996),
with the desirable properties that: (a) a diagonal restriction on 6g
is no longer necessary, which can greatly facilitate computation,
(b) one fewer cutpoint needs to be dealt with (as posterior simu-
lation of the cutpoint parameters is decidedly less standard) and,
in the special case of an ordinal variable with three possibili-
ties, no unknown cutpoints are present. Finally, as noted in Nan-
dram and Chen (1996), (c) the rescaling transformation appears to
offer improved mixing performance relative to the traditional
scale-restricted approach.Wedescribemore details regarding pos-
terior simulation of the cutpoint parameters in the Appendix.7

In the default equationwe include the loan amount, separate in-
dicator variables for the number of renewals, the interest rate, loan
term, and two additional variables (LogStatePenalty, StatuteLimit)
thatmay influence the decision to default. The LogStatePenalty vari-
able is pieced together from state-level policies regardingwhat the
lender can legally seek to collect from an agent who has defaulted
on a $300 loan. These include fees in various proportions to the size
of the loan in addition to ‘‘reasonable’’ attorney fees that, at least
for some states, are refundable to the lender.8 Finally, StatuteLimit
is a state-level variable that indicates how long the lender (or a col-
lection agency) legally has to collect on the debt. Once this limit is
reached, debt collectors may no longer sue the borrower.

The model is completed by choosing priors of the forms

ψ ∼ N (ψ0,Vψ) (9)

p(6g) ∝ pIW (6g |pR, p)I(σvvg = 1), g = 1, 2, . . . ,G (10)

η = (η1, η2, . . . , ηG) ∼ Dirichlet (κ1, κ2, . . . , κG) (11)

p(δ) ∝ I(δ1 = −∞)I(δ2 = 0)I(0 < δ3 < δ4 < δ5 < 1)
× I(δ6 = 1)I(δ7 = ∞), (12)

7 Li and Tobias (2008) provide more details on this rescaling transformation,
while Jeliazkov et al. (2008) consider it, alongwith other possibilities, in the context
of multivariate ordinal responses.
8 The collection agency must go to court to receive a judgment before it can have

wages garnished or take the money from the defaulting borrower’s bank account.
Some states explicitly set the amount that the collection agency may impose to
cover attorney fees, and when these are specified they are used in the construction
of our variable. When actual amounts are not specified, but the collection of such
fees is permissiblewithin the state,we assign such fees the value of $50,which is the
modal value among those states reporting what constitute ‘‘reasonable’’ attorney
fees. In addition to the attorney fees, many states allow additional collection fees
which are typically $10–$25, though a few states allow amuch larger collection fee.
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where ψ denotes the stacked vector of intercepts and covariate
parameters in the system, η denotes the vector of component
probabilities, δ denotes the vector of cutpoints and IW denotes
an inverse Wishart distribution. In practice we choose the
hyperparameters of our priors as ψ0 = 0k×1,Vψ = 100Ik, p = 8,
R = I3 and κ1 = κ2 = · · · = κG = 1, where k denotes the number
of parameters contained in ψ. These are rather conservative prior
choices that have little influence on our posterior estimation
results.

We close this section by offering some quick remarks regarding
identification of the mixture components. While contention
sometimes arises regarding this issue, we find this to be a minor
concern for our analysis. First, we note that the slope coefficients
are not component specific and thus no potential ambiguity arises
regarding their interpretation. Second, our remaining objects
of interest are a variety of posterior predictive densities and
counterfactuals, as will be presented in Section 4, which are
permutation invariant and thus, similarly unaffected by this
problem.9 Label switching, however, can be an important issue
for model comparison and marginal likelihood calculation via
simulated output; we briefly comment on this issue in the
following section.

4. Results

We fit the model via the MCMC algorithm fully described
in the Appendix, making use of data augmentation as described
in Tanner and Wong (1987) and Albert and Chib (1993). We
run the Gibbs algorithm for 100,000 iterations, discarding the
first 20,000 draws as the burn-in period and retaining the last
80,000 simulations as draws from the joint posterior. Regression
parameter posterior statistics will be presented in Table 4, with
the fourth column of that table summarizing mixing performance
through the calculation of numerical standard errors (NSEs)
associated with the posterior mean estimates. In all cases, the
reported NSEs are quite small relative to the posterior means,
indicating that the number of simulations obtained under our
algorithm enables reasonably precise estimation of those posterior
moments.

Although we are encouraged by these results and the perfor-
mance of our algorithm overall, our 80,000 draws clearly provide
less information than the information that would be provided by
an i.i.d. sample of equal size. For the slope coefficients on the ex-
ogenous variables, inefficiency factors are quite small (typically be-
tween 2 and 10), while the worst offenders proved to be the error
correlation coefficients and coefficients on the endogenous vari-
ables. The inefficiency factors for these coefficientswere often near
or slightly in excess of 100, although our effective sample sizes in
these worst cases still exceeded 700.

We considered models using one to four mixture components.
Marginal likelihoods10 suggested a strong preference for the two

9 Geweke (2007) contains an excellent discussion of this and related issues.
10 To calculate the marginal likelihoods, we follow the bridge sampling ap-
proach described in Frühwirth-Schnatter (2004), with related details supplied in
Frühwirth-Schnatter (1994) and Frühwirth-Schnatter (2001), among others. This
involved fitting the model without any component identification constraints and
then randomly permuting the posterior simulations to achieve a ‘‘balanced’’ sam-
pler. Details and code for this exercise are available upon request. Results (under
equal prior odds) indicated that the two componentmodelwas favored over the sin-
gle component Gaussian specification by a factor exceeding 6000:1. Adding more
mixture components beyond the second was not supported by the data, as both
the three and four component models had smaller marginal likelihoods than the
single component Gaussian model. These results suggest the need to generalize
normality, but not to proceed too far in that direction, as the added parameter-
ization became unnecessary beyond two mixture components. Below, we docu-
ment in detail the ability of the two component model to capture key features of
our data.

component mixture model over the standard Gaussian model
and also revealed a similarly strong preference for the use of
two components over more highly parameterized three and four
component specifications. This preference was also apparent
when conducting diagnostic checking for the fit of each model.
The standard single component Gaussian model was unable
to reproduce key features of our data (such as skewness
and bimodality in the loan amount distribution), whereas the
two component model adequately reproduced those and other
features. When expanding to a three component specification, we
did not discern any noticeable improvement in overall model fit
over that provided by the two component specification. For these
reasons, we report results below from the two componentmixture
model only, and in the following section, also justify this choice
through reasonably extensive model checking.

4.1. Assessing model fit

We investigate questions of model fit and adequacy by
generating a series of simulations from the posterior predictive
distribution, obtaining such simulations after first fixing all
covariates to equal their in-sample values. The idea behind this
exercise is to check a variety of dimensions of model fit by
generating a series of outcomes from the maintained fitted model
and then to see howwell the distribution of thosemodel-predicted
outcomes align with the actual distribution of outcomes in our
sample. Formally, we proceed by noting

p(yrep
|yobs, xrep = xobs)

=


p(yrep

|θ, yobs, xrep = xobs)p(θ|yobs, xrep = xobs) dθ

=


p(yrep

|θ, xrep = xobs)p(θ|yobs) dθ.

Therefore, for every post-convergence draw θ(r) from our posterior
simulator, we generate a replicated data set from (1)–(8), denoted
yrep,(r), upon setting the covariates xrep to be equal to the covariates
observed in-sample. Summaries of fit can then be obtained
by comparing features of the replicated distribution to their
counterparts obtained from the distribution of observed data.11

Fig. 1 presents one dimension of this exercise, as it plots a
nonparametric estimate of the observed loan amount distribution
alongside the posterior mean density estimate based upon the
two component mixture version of (1)–(8). The latter is obtained
by first noting that each post-convergence simulation yields a
replicated loan amount vector. The estimated density of that vector
is then obtained over a variety of fixed loan amount grid points. The
resulting collection of density ordinates at each grid point – one
obtained for each post-convergence simulation – is then averaged
to obtain the plot in the figure.

In the right-most panel of Fig. 1, we also plot 90% HPD intervals,
constructed from the collection of density ordinates at each grid
point. As the left portion of the figure suggests, the estimated
mixture density captures the skew and bimodality that is present
in the loan amount data, and a standard single component
Gaussianmodel clearlywould not be sufficiently flexible to capture
these features of the loan amount distribution. Finally, the right
panel of Fig. 1 also illustrates that the nonparametric estimates
fall within the mixture 90% HPD intervals at each grid point under
consideration.

Another aspect of fitting the loan amount distribution concerns
our ability to accurately predict how borrowers are constrained

11 Lancaster describes this process in further detail Lancaster (2004, pp. 90–91)
and eloquently summarizes it as ‘‘a re-run of history on the assumption that the
model is what generates histories’’.
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Table 3
Summary statistics for model fit.

(Renewal, default) Full sample Loans ≥ 300 Loans ≥ 500
Actual E(·|y) Std(·|y) Actual E(·|y) Std(·|y) Actual E(·|y) Std(·|y)

(0, 0) 0.145 0.141 0.011 0.059 0.045 0.007 0.013 0.012 0.003
(1, 0) 0.134 0.132 0.010 0.059 0.053 0.006 0.019 0.016 0.003
(2, 0) 0.107 0.105 0.009 0.053 0.047 0.006 0.020 0.016 0.003
(3, 0) 0.078 0.076 0.008 0.042 0.037 0.005 0.013 0.013 0.003
(4, 0) 0.058 0.057 0.007 0.032 0.029 0.004 0.013 0.010 0.002
(5, 0) 0.203 0.212 0.012 0.125 0.125 0.009 0.052 0.052 0.006
(0, 1) 0.155 0.158 0.011 0.037 0.032 0.005 0.011 0.009 0.002
(1, 1) 0.061 0.059 0.007 0.019 0.019 0.004 0.007 0.007 0.002
(2, 1) 0.029 0.028 0.005 0.009 0.010 0.003 0.004 0.004 0.002
(3, 1) 0.016 0.017 0.004 0.008 0.007 0.002 0.003 0.003 0.001
(4, 1) 0.012 0.012 0.003 0.005 0.006 0.002 0.003 0.003 0.001
(5, 1) 0.003 0.003 0.002 0.002 0.002 0.001 0.002 0.001 0.002

Fig. 1. Actual and replicated loan amount densities.

(or not constrained) by the state-imposed loan amount thresholds.
Apart from the lender-imposedmaximum of $1000 (which applies
to states that have no explicit borrowing cap), the most common
loan maxima in our data (as shown in Table 1) are $300 and
$500. Among the states that impose a borrowing limit equal to
$300, 42% of borrowers were observed to take out loans in the
threshold amount. Our model matches this fraction rather closely
as it predicts that 38% of such borrowers will seek a loan in the
amount of $300, with an associated 90% HPD interval equal to
(5%, 60%). Among the states that impose a borrowing limit equal
to $500, 15% of borrowers are observed to take out a loan of the
maximum amount. Our model predicts that 14.5% of borrowers
in such states will seek to take out the maximum amount, with
an associated 90% HPD interval equal to (0%, 24%). These results,
together with those in Fig. 1, suggest that our model performs well
in its ability to reproduce the distribution of loan amounts and
in predicting the percentages of agents that are affected by state-
imposed borrowing limits.

In terms of the number of loan renewals, the frequencies
of renewal outcomes in our data are 30.0%, 19.5%, 13.6%, 9.4%,
7.0% and 20.6%, for Renewals = 0, 1, 2, . . . , 5, respectively. Not
surprisingly, our ordinal choice model matches these outcomes
very closely, as the posterior mean frequencies are 29.9%, 19.1%,
13.3%, 9.3%, 6.9% and 21.5%, respectively. The overall probability of
default is estimated equally well, with the observed frequency of
default and its posterior mean both found to equal 28%.

Table 3 expands on this replication exercise and further tests
the performance of our model. In the first block of columns of

Table 3, we report results associated with replication of the full
joint distribution of renewal and default outcomes. Columns 2–3
of the table report the observed (Actual) and estimated [E(·|y)]
joint probabilities of each renewal/default cell. The third column
reports the posterior standard deviation associated with each cell
probability. Here we see that our model is able to replicate this
finer set of discrete probabilities very well, as the posterior means
match the actual frequencies closely in all cases. Furthermore, the
posterior standard deviations associated with these fractions are
also reasonably small, indicating the cell probabilities are precisely
estimated by our model.

The remaining sets of columns of Table 3 examine how well
the model is able to reproduce the joint distribution of renewal
and default outcomes across different loan amount values. In the
middle portion of the table (columns 5–7), we report observed
and estimated joint probabilities of renewal/default pairs and the
event that the loan will be at least as large as $300. A similar
exercise is conducted in columns 8–10 of the table, this time
presenting various joint probabilities associatedwith loans at least
as large as $500. Again, we see that the observed and estimated
probabilities align rather closely, indicating that our model is
able to reproduce the observed renewal/default joint distribution
not just unconditionally, but also across different loan sizes. In
these last two replication exercises, our point estimates of the
cell probabilities fall within one posterior standard deviation of
the observed outcome in 21 out of 24 cases. In the remaining
three instances, the observed outcomes fall within two standard
deviations of the posterior means.

4.2. Parameter estimates and marginal impacts

Regression parameter posterior means, posterior standard
deviations, numerical standard errors and probabilities of being
positive associated with the two component mixture model are
presented in Table 4.

Given the nonlinearity of themodel, the coefficients themselves
are obviously not directly interpretable as marginal effects. For
this reason, we report in the fifth column of Table 4 a series of
point estimates of the marginal impacts (denoted ‘‘ME’’) of the
different covariates on each equation’s outcome.12 For a given
post-convergence draw from our simulator, we calculate how
much the outcome of interest changes following a particular
change in the given covariate, and do this for every observation

12 The marginal effects in this table are not complete summaries as they do not
capture any ‘‘indirect effects’’ of the covariate that feed through the model. For
example, in calculating the effect of LogRent on Renewals, we do not consider the
effect of LogRent on the amount borrowed and the subsequent impact of the amount
borrowed on renewal behavior. Complete summaries of this type are, however,
considered in the following section.
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Table 4
Posterior summary statistics of a selection of parameters (from βRate to δ5).

Parameter (ξ ) E(ξ |D) Std(ξ |D) Pr(ξ > 0|D) NSE ME

βRate −0.0483 0.298 0.438 0.00165 −1.18
βTerm 0.0021 0.00224 0.825 1.29e−005 0.536
βLogRent 0.0481 0.0286 0.954 0.000166 1.39
βLogStateMAX 0.0828 0.03 0.997 0.000172 11.4
γLogAmt 0.518 0.128 1 0.0024 0.405
γRate −1.06 0.641 0.0497 0.00626 −0.234
γTerm 0.0104 0.00341 0.999 1.48e−005 0.0236
γLogRent −0.0166 0.0435 0.351 0.000187 −0.00423
γStateCap 0.0343 0.0134 0.994 0.00019 0.0523
γNoStateCap 0.131 0.0551 0.991 0.00069 0.298
θLogAmt 0.693 0.303 0.991 0.0125 0.05
θI(Renewals=1) −0.38 0.179 0.0145 0.00606 −0.0287
θI(Renewals=2) −0.64 0.246 0.00356 0.0091 −0.0575
θI(Renewals=3) −0.683 0.294 0.00835 0.0109 −0.0632
θI(Renewals=4) −0.633 0.337 0.0292 0.0127 −0.0552
θI(Renewals=5) −1.98 0.465 0 0.0199 −0.21
θRate 2.25 0.99 0.987 0.00947 0.0503
θTerm 0.028 0.00891 1 0.000212 0.0059
θLogRent −0.447 0.112 0 0.00189 −0.0107
θLogStatePenalty −0.181 0.055 0.000175 0.0014 −0.0373
θStatuteLimit −0.0176 0.0132 0.0886 0.000109 −0.00369
δ3 0.384 0.0142 1 0.000262
δ4 0.641 0.0145 1 0.000279
δ5 0.835 0.0116 1 0.000219

in the sample. The results are then averaged over the collection of
sample values. The process is repeated for all posterior simulations
and then averaged a final time to produce the entries in the last
column of the table.

Marginal effects related to LogRent, LogAmt, LogStateMax and
LogStatePenalty are calculated by considering changes in the
level of those variables equal to $100, while marginal effects
related to Rate estimate impacts resulting from increasing Rate by
0.1. Unless otherwise noted, marginal effects for the remaining
parameters are associatedwith unit increases in the variable under
consideration. Estimated MEs for the LogAmt equation represent
expected changes in the amount borrowed (not its log). For the
default equation, the MEs quantify the increase or decrease in
the probability of default while effects for the Renewals equation
simply report the expected increase in the number of times the
loan is renewed.

We first observe from Table 4 that the interest rate associated
with the loan has little impact on loan size [Pr(βRate > 0|y) =

0.438, loan amounts fall by only $1.18 on average in response
to increasing Rate by 0.1], which is consistent with our earlier
observation that a majority of payday borrowers take out loans for
emergency purposes andmayhave no other recourse formanaging
an unanticipated economic shock. The interest rate does, however,
have a rather strong effect on the number of loan renewals
[Pr(γRate > 0|y) ≈ 0.05], and increasing the rate by 0.1 lowers the
expected number of renewals by 0.23. Higher interest rates also
result in increased likelihoods of default [Pr(θRate > 0|y) ≈ 0.99],
and increasing the interest rate by 0.1 increases the probability
of default by approximately 5%. Given these results, the expected
impact of an interest rate reduction on lender profits is unclear and
warrants additional investigation: although a higher interest rate
allows the lender to collect higher fees at each renewal, such an
effect may be partially or wholly offset by fewer interest payments
in total and more loans ending in default. We will return to this
issue when discussing several different policy simulations in the
following section.13

13 We do not model the extensive margin aspect of this problem, by which we
mean that lower ratesmight potentially inducemore individuals to seek out payday
loanswho otherwisewould not.We focus, instead, solely on the ‘‘intensivemargin’’,
given the data available to us. In a similar vein, onemight be concerned that a policy

The (log) monthly rent paid by the individual is also found
to be an important determinant of loan size and the decision
to default. Borrowers who pay more in rent each month tend
to take out larger loans [Pr(βLogRent > 0|y) > 0.95]. Specifically, a
$100 increase in monthly rent paid is associated with an expected
increase in loan amount equal to $1.39, a rather small quantity.14
Individuals paying more per month in rent are also less likely to
default [Pr(θLogRent > 0|y) ≈ 0], with borrowers paying $100more
per month in rent being approximately 1.1% less likely to default
on their loans. Rent, however, is found to have little economic
[increasing rent by $100 decreases the number of renewals by
0.004] or statistical [Pr(γLogRent > 0|y) ≈ 0.35] impact on the
number of loan renewals. This pattern of outcomes is consistent
with what we would expect, given that individuals with greater
financial stability (and thus presumably paying more in rent)
should be associated with larger loans and fewer incidences of
default.

Larger loans are clearly renewed more often, as Pr(γLogAmt >
0|y) ≈ 1 (that is, all posterior simulations associated with this pa-
rameter were positive). Increasing loan size by $100 leads to an
expected increase in the number of renewals by approximately
0.41. Furthermore, and perhaps not surprisingly, larger loans are
more likely to end in default, as Pr(θLogAmt > 0|y) ≈ 0.99. Hold-
ing all other factors constant, increasing the loan amount by $100
results in a 5% increase in the probability of default.

The state-level policy variables employed as exclusion restric-
tions all seem to play prominent roles and operate in the directions

change could lead to changes in the types of individuals that take out payday loans,
which is not fully accounted for in our analysis. While this is certainly possible,
and our results must be interpreted with a degree of caution in light of this, we
do not believe this is a significant problem. On the lender side, most loans are
simply approved and thus little supply-side selection takes place. On the demand
side, we do not find strong relationships between state policy parameters (such
as the interest rate charged, maximum number of renewals and default penalties)
and either the rents paid by our borrowers or zipcode-level characteristics (such as
median income and education levels) associated with those borrowers.
14 Monthly rents in our data range from $367 to $2388, with a standard deviation
in excess of $350. Thus, a $100 change in rent represents a rather modest increase
in the level of that variable. Furthermore, the desired increase in loan amount
associatedwith the rent increase is not permitted by prevailing state policy inmany
cases, as the latent amount is already in excess of the state borrowing limit.Marginal
effects in such instances are necessarily coded as zero and thus attenuate the overall
impact.
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we expect. In addition to effects operating through support restric-
tions, states having higher borrowing maxima are also associated
with higher conditional means in the latent loan amount equation,
as Pr(βLogStateMax > 0|y) ≈ 1. Increasing the borrowing limit by
$100 results in loans that are $11.40 larger on average. States with
fewer restrictions on the number of permissible renewals are as-
sociated with loans being held longer [Pr(γStateCap > 0|y) ≈ 1,
Pr(γNostateCap > 0|y) ≈ 1] and borrowers residing in states with
more stringent penalties on defaulters are less likely to default:
Pr(θLogStatePenalty > 0|y) ≈ 0. Similarly, states that allow more time
for the lender to collect on negligent debt are generally associated
with lower probabilities of default [Pr(θStatuteLimit > 0|y) > 0 ≈

0.089].
Point estimates of the loan renewal indicators in the default

equation generally reveal a monotonic pattern,15 and indicate that
those renewing the loan at least once are significantly less likely
to default than those who never renew. This finding is, perhaps,
not terribly surprising given the nearly even split of 0 renewal
outcomes among defaulters and non-defaulters and an overall
sample default rate of 28%. The coefficients also reveal that those
renewing the loan five times – the cap imposed by the lender –
are very unlikely to default, and this group is clearly differentiated
from those renewing between one and four times. The explanation
here is that agents realize this is the last renewal possibility and
thus choose to renewa final timeonly if they know theywill be able
to pay off the loan in full.16 The correlation between the errors of
the renewals and default equations was also found to be negative,
though rather imprecisely estimated. This negative correlation is
consistent with the view that agents who renew a loan more often
than expected (and thus have relatively high u values) are precisely
the ones that have every intention of paying off the loan and do
everything they can to do so (and thus tend to have relatively low
values of v).

4.3. Model predictions and counterfactual exercises

The previous discussion of results read mostly as an accounting
exercise, where we simply enumerated variables that were
empirically important, discussed the directions of their effects,
and in some cases offered brief discussions of particular marginal
impacts. A primary goal of this paper, however, is more ambitious
than this, as we seek to use our model to describe how changes
in policy variables—such as the interest rate and state loan
maximum—will impact loan amounts, loan durations, default
decisions and lender revenues. Importantly, changes in these
policy variables filter through the entire equation systemand affect
all our outcomes through a variety of direct and indirect channels.
In what follows we thus determine the total impacts of various
policy changes on each of our three endogenous variables and also
investigate how lender revenues are affected under different policy
experiments.

To this end, we again look to the posterior predictive distribu-
tion. Let

yf = [logAmt f Renewalsf Default f ]

15 An exception to this occurs when moving from three to four renewals.
16 An agent faced with a fifth renewal decision who realizes he/she cannot repay
the loan would rationally default after the fourth renewal decision and choose not
to renew at this final opportunity. Such backward induction is not applied in all
periods, however, as it is clearly optimal for defaulting agents to do so immediately
rather thanmake one or several interest payments only to eventually default. Since
the time from loan receipt to final repayment can be quite long—nearly 3 months
for biweekly paid individuals and 6months formonthly paid individuals, borrowers
may face considerable uncertainty in their income streams over this period and thus
continue to renewwith the expectation that repayment will eventually be possible.
For individuals facing the final renewal decision, this type of uncertainty is lessened,
and those renewing the maximum amount typically do not default.

and define y∗

f similarly as future unobserved outcomes that we
wish to characterize given the model. Dropping superfluous con-
ditioning information as appropriate, the posterior predictive dis-
tribution for this vector of outcomes is obtained as:

p(yf |y, xf ) =


Θ

p(yf |y∗

f )p(y
∗

f |θ, xf , y)p(θ|y)dθ. (13)

Samples from (13) can be easily generated via the method of com-
position, given the marginal-conditional decomposition of the in-
tegrand.

We use this basic idea to perform three different counterfactual
exercises.17 For the first of these, we consider changes in loan
amount, loan duration and default that result from a state lowering
its maximum interest rate to 0.10 (the lowest value in our sample)
from an initial rate of 0.23 (the highest value in the sample).
Second, we consider the change in these same variables as a result
of a state lowering the maximum amount that can be borrowed
from $1000 (the largest value in the sample) to $300 (the smallest
sample value). Third and finally, we consider what would happen
if a state moved from imposing no cap on the maximum number
of renewals a borrower could make to imposing (although not
actually being able to enforce) that a borrower cannot renew the
loan and must pay in full at the next payday.

Results of these policy experiments are provided in Table 5
and some explanations of the quantities provided in that table
and their calculation are in order. As the notation of (13) makes
clear, draws from (13) are conditional upon values of the covariates
xf . To eliminate this dependence in our results, we follow Chib
and Jacobi (2007) and sample values of the covariates that are
not involved in the construction of our counterfactual from the
empirical distribution of covariates in our sample. We do this for
each iteration of the sampler. This enables us to report average (and
unconditional) posterior predictive impacts of the policy changes
instead of simply reporting impacts for a particular subset of
individuals.

The first column of Table 5 summarizes effects of the policy
changes on the amount borrowed. The second column summarizes
the effects on the number of times that the loan is renewed. Results
in this second column offer a complete summary of the impact
of the policy change on loan renewals in the sense that they take
into account the ‘‘direct’’ effect of the change in policy variable as
well as its indirect effect derived from changes to the loan amount.
The third column summarizes the effects on the default outcome.
Again, these offer a complete summary on the default impact as
they account for both the direct effect of the policy change as well
as indirect effects that filter through from changes to loan amount
and to loan duration.

The final column of Table 5 describes the effect on revenues to
the lender. For a given draw from (13), the amount returned to
the lender from a loan provided under the current set of policy
variables is directly calculable as18:
LenderRevenuef = Default f (exp(logAmt f ) ∗ Renewalsf ∗ Ratef )

+ (1 − Default f ) ∗ (exp(logAmt f )

× [1 + (1 + Renewalsf ) ∗ Ratef ]). (14)

17 For these calculations we keep the unobservables constant across the two
different scenarios as we envision tracing out the effects of these policy changes
for a given individual.
18 This calculation does not explicitly account for a few aspects of the payday
lending process. First, it ignores the salvage value of a defaulted loan that is
recoverable by the lender upon selling such loans to a collection agency. Second,
a very small number of states in our data permit the lender to charge an initial fee
for processing the loan (typically less than $10) as well as similar fees upon each
loan renewal. As these fees are quite uncommon in our data, we do not consider
them when calculating (14). Third, we also assume that, at each loan renewal, the
agent simply pays the interest and does not pay down any principal. Finally, we do
not consider the case where loans are repaid within 3 or 4 days since such cases of
rapid repayment cannot be charged any interest by the lender.
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Table 5
Counterfactual calculations.

Statistic Amount Renewals Default Revenue

Interest rate

E(∆|y) $1.69 0.324 −0.083 $−68.7
Std[∆|y] $16.99 0.513 0.280 $162.8
Pr(∆ > 0|y) 0.51 0.310 0.002 0.121
Pr(∆ = 0|y) 0.10 0.686 0.913 0.127
Pr(∆ < 0|y) 0.39 0.004 0.085 0.752

State loan maximum

E(∆|y) $−100.50 −0.325 −0.058 $−114.78
Std[∆|y] $152.65 0.624 0.235 $245.65
Pr(∆ > 0|y) 0.002 0.000 0.000 0.048
Pr(∆ = 0|y) 0.000 0.745 0.942 0.144
Pr(∆ < 0|y) 0.998 0.255 0.058 0.808

State renewal cap

E(∆|y) – −0.298 0.025 $−62.87
Std[∆|y] – 0.474 0.173 $197.99
Pr(∆ > 0|y) – 0.028 0.028 0.003
Pr(∆ = 0|y) – 0.745 0.970 0.709
Pr(∆ < 0|y) – 0.255 0.002 0.288

The first five rows of Table 5 present results from our interest
rate reduction experiment. Here, we again see that the rate drop
has a rather small impact on the size of the loan. The expected
increase in loan size resulting from lowering the interest rate
from 0.23 to 0.10 is merely $1.69, with a posterior standard
deviation estimated to be ten times as large as the posterior mean.
Approximately ten percent of the time the amount of the loan is
completely unaffected by lowering the interest rate in this way,
as these outcomes occur when the borrower seeks to take out the
state maximum amount under both interest rate scenarios.19 The
interest rate drop also leads to an expected increase in the number
of loan renewals equal to 0.32 and increases the number of loan
renewals approximately 31% of the time. Finally, the interest rate
reduction lowers the probability of default by approximately 8.3%
while the posterior probability that default behavior is completely
unaffected is approximately 0.91.

Although the interest rate reduction leads to (very) slightly
larger loans on average, loans that are renewed more often, and
an overall decrease in the probability of default, the mean effect
of this reduction on lender revenues remains negative, lowering
the average amount returned to the lender by $68.7. Seventy-
five percent of the time lender revenues decline as a result of
this rate reduction, and revenues are completely unaffected 13%
of the time. These instances of no revenue change occur when
either the borrower takes out the state maximum under both
rates and renews the loan the same number of times or when the
agent defaults without any form of repayment under both regimes.
Lender revenues are observed to increase with the interest rate
reduction in approximately 12% of loans. These positive outcomes
always occur when agents are induced to repay their loan under
the lower rate (but otherwise would have defaulted), while other
positive revenue changes are realized when the agent is induced
to renew the loan additional times when facing a lower interest
rate. Among the revenue difference simulations that are ‘‘large’’
– defined here in excess of $900 in absolute value – 92% of these

19 For example, consider that Pr(βRate > 0|y) = 0.438 in Table 4. Positive values
of the rate coefficient would seem to be associated with negative values of ∆Amount
in the first column of Table 5, as the effect we consider pertains to a sizeable
interest rate reduction. However, we note Pr(∆Amount < 0|y) = 0.39 in Table 5, a
smaller number than 0.438. This slight discrepancy arises since some positive βRate
simulations produce exactly zero change in the loan amount. This happens when
the borrower wishes to take out a loan at least as large as the maximum allowable
amount even under the low rate regime and thus the change to amount borrowed
is identically zero.

correspond to revenue gains under the lower rate regime. These
realizations correspond exactly to the caseswhere default behavior
is affected—having a loan successfully paid in full an additional
8.3% of the time can result in huge revenue gains in the low rate
regime relative to the high rate regime. Such concerns over default
behavior and the large losses that can occur with default likely
motivated our lender’s decision to set 0.23 as the charged interest
rate even in states that allowed higher rates or provided no explicit
rate cap.

The second portion of the table provides posterior statistics
associated with dropping the state loan maximum from $1000 to
$300. Here the results are clear and mostly unfavorable from the
lender’s perspective. Lowering the state maximum in this fashion
results in loans that are smaller by approximately $100 on average
and, not surprisingly, more restrictive borrowing limits almost
always lower the size of the loan.20 The reduction in the loan cap
also lowers the expected number of loan renewals by 0.33, is never
associated with additional renewals in any of our simulations, and
results in fewer loan renewals approximately 26% of the time.
Lowering the state cap never induces new cases of default in any
of our simulations and eliminates default in approximately 5.8% of
loans. The impacts on renewals and default, of course, are primarily
driven by the smaller loan sizes themselves, which were found in
Table 4 to reduce the number of loan renewals and to discourage
default. Finally, lender revenue is reduced by approximately $115
on average when lowering the state maximum to $300, and
revenues are lowered nearly 81% of the time. In 14% of cases,
lender revenues are unaffected when restricting the maximum
loan amount in this way, and these cases correspond to immediate
defaults by the borrower regardless of the permissible loan size.
Lender revenues also increase approximately 5% of the time, all of
which arise when the lower loan size induces the agent to pay off
the loan rather than default.

The third and final set of rows in Table 5 present results related
to the state renewal cap counterfactual. In this case we investigate
what happens to our outcome variables of interest when a state
moves from a policy of no restrictions on the number of renewals
taken to one where the borrower is restricted to pay off the loan
in full at the next pay period. Given the assumed triangularity of
the model, this change has no impact on the size of the loan, but
does reduce the expected number of renewals by approximately
0.3. The imposition of the renewal caphas a small impact ondefault
behavior, leaving default outcomes unchanged 97% of the time
and inducing default in approximately 3% of loans. The increased
likelihood of default results from the overall reduction in loan
renewals, as Table 4 revealed a general trend that loans renewed
more often were less likely to end in default. Lender revenues
decrease with probability 0.29 and in an average amount of $62.9
as a result of prohibiting loan renewals, owing to both fewer
interest payments made on average and a small increase in the
default likelihood. This situation, somewhat unlike the other two
experiments discussed earlier, reveals little opportunity for an
increase in lender revenues as a result of the policy change, as the
posterior probability that revenues will increase following the ban
on renewals is just 0.003.

As a whole these results suggest that state-level regulations
have important effects on borrower behavior. If policy makers
wish to mitigate default, reducing the maximum interest rate that
can be charged and the maximum amount that can be borrowed
offer somewhat effective ways to lessen its incidence. On the other
hand, prohibiting loan renewals has comparably little impact on

20 From Table 4 we see that βLogStateMax is negative for 0.3% of the simulations, and
these draws were associated with larger loan amounts or loan amounts that were
unchanged under both scenarios.
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default behavior and restricting the payoff deadline in this way
may actually induce some individuals to default.

Our revenue calculations also suggest that payday lenders
would more strongly oppose legislation that restricts the maxi-
mum loan amount than legislation that would reduce the maxi-
mum interest rate (at least over the supports spanned by our data).
In fact, sufficiently risk-averse lenders could potentially prefer a
lower interest rate given its modest preventative effects on default
behavior and the large gains that are realized when lower rates in-
duce agents to pay off their loans. Such a politically popular effort
to lower interest rates would be met with less (or perhaps little)
resistance by payday lenders if it were accompanied bymore strin-
gent penalties on defaulting borrowers. The results of Table 4, for
example, show such penalties to be rather effective, as a $100 in-
crease in the amount that can be recovered on a defaulted $300
loan lowers the default rate by nearly 4%.

5. Conclusion

Payday lending is a commonpracticewith an estimated tenmil-
lion borrowers in the US (Skiba and Tobacman, 2008). Researchers
have primarily addressed the question of whether access to pay-
day lending is beneficial or harmful to borrowers and the results
have been mixed. While payday lending is illegal in some states,
most states allow payday lending and regulate the terms of the
loans. There is great interest by policy makers, consumer-rights
advocates, and the payday loan industry to know how borrowers
respond to these state-level regulations.

Payday loan regulations vary substantially across states, and
we make use of data from an online lender with loans distributed
across 38 states. We use flexible Bayesian methods to estimate a
model that allows us to describe how these state-level regulations
affect borrower behavior. To our knowledge, this is the first paper
to investigate these relationships.

Our estimates suggest that decreasing the maximum interest
rate that may be charged increases the length of time the loan
is held and decreases the probability of default. Reducing the
maximum amount that an individual may borrow decreases the
amount individuals choose to borrow (even those not constrained
by themaximum), decreases the length of time the loan is held, and
also decreases the probability of default. Requiring borrowers to
repay their entire loan on their next payday (rather than allowing
loan renewals to continue indefinitely) results in fewer loan
renewals on average, lower lender revenues and an approximate
3% increase in the likelihood of default.

Appendix

In this sectionwe provide details of our posterior simulator. The
model in (1)–(8) is a linear SEM on suitably defined latent data.
Posterior simulation proceeds via MCMC methods, as described
completely below. In the description that follows we assume the
number of mixture components, G, is given.

To simplify some of our later expressions, we first define:

a∗

i = LogAmt∗i
xi = (Ratei, Termi, LogRent i, LogStateMAX i)

β = (β1, β2, β3, β4)
′

ai = LogAmt i
mi = LogStateMAX i

r∗

i = Renewals∗i
zi = (LogAmt i, Ratei, Termi, LogRent i, StateCapi, NoStateCapi)
γ = (γ1, γ2, γ3, γ4, γ5, γ6)

′

ri = Renewalsi

δ = (δ1 = −∞, δ2 = 0, δ3, δ4, δ5, δ6 = 1, δ7 = ∞)

d∗

i = Default∗i
wi =


LogAmt i, I(Renewalsi = 1), . . . , I(Renewalsi = 5),
Ratei, Termi, LogRent i, LogStatePenaltyi, StatuteLimit i


θ = (θ1, θ2, . . . , θ10, θ11)

′

di = Default i.

With this notation in hand, we can write our model as,
conditional on the value of the component labeling variable ci:

a∗

i = β0ci + xiβ + ϵi ≡ x̃iβ̃ + ϵi

ai = min{a∗

i ,mi}

r∗

i = γ0ci + ziγ + ui ≡ z̃iγ̃ + ui

ri =

5
j=0

j × I(δj+1 < r∗

i ≤ δj+2)

d∗

i = δ0ci + wiθ + vi ≡ w̃iθ̃ + vi

di = I(d∗

i > 0)

(ϵi, ui, vi)
′
|·, ci

ind
∼ N(03×1,6ci)

where x̃i = x̃i(ci) ≡ [I(ci = 1) I(ci = 2) · · · I(ci = G) xi], β̃ =

[β01 β02 · · ·β0G β
′
]
′ and z̃i, w̃i, γ̃ and θ̃ are defined similarly.

Let d∗
= (d∗

1, d
∗

2, . . . , d
∗
n)

′, d = (d1, d2, . . . , dn)′, r∗
= (r∗

1 , r
∗

2 ,

. . . , r∗
n )

′, r = (r1, r2, . . . , rn)′, a∗
= (a∗

1, a
∗

2, . . . , a
∗
n)

′, a = (a1,
a2, . . . , an)′, c = (c1, c2, . . . , cn)′, 6 = (61,62, . . . ,6G), and
ψ = (β̃

′

, γ̃ ′
, θ̃

′

)′. The priors employed were given in (9)–(12).
The augmented joint posterior distribution of d∗, r∗, a∗, c, ψ,

η, δ and 6 is thus proportional to the following joint density of
observed data, latent data and model parameters:

p(d∗, d, r∗, r, a∗, a, c, η,ψ, δ,6)

∝


G

g=1

η
κg−1
g |6g |

−
p+4
2 exp


−

1
2
tr(pR6−1

g )


I(σvvg = 1)


× |2πVψ|

−
1
2

× exp

−

1
2
(ψ − ψ0)

′V−1
ψ (ψ − ψ0)


I(δ1 = −∞)

× I(δ2 = 0)I(0 < δ3 < δ4 < δ5 < 1)I(δ6 = 1)I(δ7 = ∞)

×

n
i=1

|2π6ci |
−

1
2

× exp

−
1
2

a∗

i − x̃iβ̃
r∗

i − z̃iγ̃
d∗

i − w̃iθ̃

′

6−1
ci

a∗

i − x̃iβ̃
r∗

i − z̃iγ̃
d∗

i − w̃iθ̃


× [I(ai = a∗

i )× I(a∗

i < mi)+ I(ai = mi)× I(a∗

i ≥ mi)]

× I(δri+1 < r∗

i ≤ δri+2)[I(di = 0)
× I(d∗

i ≤ 0)+ I(di = 1)× I(d∗

i > 0)]

×


G

g=1

ηg I(ci = g)


. (15)

We generate samples from the posterior distribution derived
from (15) via a combination of Gibbs and Metropolis–Hastings
steps. Each iteration involves a total of eight sampling steps which
are enumerated in detail below:

Step 1: Sampling c
For i = 1, 2, . . . , n, the component label variable ci is sampled

from a discrete distribution where the conditional posterior
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probability that ci = g , for g = 1, 2, . . . ,G, is simply

Pr(ci = g|Ξ−ci ,D)

=

ηg |6g |
−

1
2 exp

−
1
2


a∗

i − β0g − xiβ
r∗

i − γ0g − ziγ
d∗

i − θ0g − wiθ

′

6−1
g


a∗

i − β0g − xiβ
r∗

i − γ0g − ziγ
d∗

i − θ0g − wiθ


G

h=1
ηh|6h|

−
1
2 exp

−
1
2


a∗

i − β0h − xiβ
r∗

i − γ0h − ziγ
d∗

i − θ0h − wiθ

′

6−1
h


a∗

i − β0h − xiβ
r∗

i − γ0h − ziγ
d∗

i − θ0h − wiθ

 ,
∀i, g.

Step 2: Sampling η

From (15), it is seen that the posterior conditional distribution
of the component probability vector η is Dirichlet:
η|Ξ−η,D ∼ Dirichlet(κ1 + n1, κ2 + n2, . . . , κG + nG)

where ng ≡
n

i=1 I(ci = g), g = 1, 2, . . . ,G.

Step 3: Sampling 6g

The conditional posterior distributions of the component-
specific covariance matrices 6g are independent, with each pro-
portional to
p(6g |Ξ−6g ,D)

∝ pIW

6g

p + ng , pR +


{i:ci=g}

×

a∗

i − β0g − xiβ
r∗

i − γ0g − ziγ
d∗

i − θ0g − wiθ

a∗

i − β0g − xiβ
r∗

i − γ0g − ziγ
d∗

i − θ0g − wiθ

′
 I(σvvg = 1),

g = 1, 2, . . . ,G.
To generate draws from this conditional posterior, we make use of
Nobile’s (2000) comments on McCulloch et al.’s (2000) reparam-
eterization approach to posterior simulation in multinomial pro-
bit (MNP) models. The problem we face in step 3 is identical to
that faced in theMNPmodel, as it demands generating draws from
an inverse Wishart, given a restriction on a single diagonal ele-
ment. Nobile (2000) provides a direct solution for generating such a
draw in his Algorithm 3, which only requires simulating (and then
properly manipulating) a series of chi square and normal random
variates.

Step 4: Sampling ψ

The conditional posterior distribution of the regression param-
eters ψ is multivariate normal:
ψ|Ξ−ψ,D

∼ N


V−1

ψ +

n
i=1

 x̃i 01×kz̃ 01×kw̃
01×kx̃ z̃i 01×kw̃
01×kx̃ 01×kz̃ w̃i

′

× 6−1
ci

 x̃i 01×kz̃ 01×kw̃
01×kx̃ z̃i 01×kw̃
01×kx̃ 01×kz̃ w̃i

−1

×

V−1
ψ ψ0 +

n
i=1

 x̃i 01×kz̃ 01×kw̃
01×kx̃ z̃i 01×kw̃
01×kx̃ 01×kz̃ w̃i

′

6−1
ci

a∗

i
r∗

i
d∗

i

 ,
V−1

ψ +

n
i=1

 x̃i 01×kz̃ 01×kw̃
01×kx̃ z̃i 01×kw̃
01×kx̃ 01×kz̃ w̃i

′

× 6−1
ci

 x̃i 01×kz̃ 01×kw̃
01×kx̃ z̃i 01×kw̃
01×kx̃ 01×kz̃ w̃i

−1
 .

Step 5: Sampling the latent a∗

Eq. (15) reveals that each a∗

i can be sampled independently,
i = 1, 2, . . . , n, from the following density:

p(a∗

i |Ξ−a∗i
,D) ∝ exp


−

1
2
(a∗

i − µai|u,v)
2σ−1
ϵϵci|u,v


× [I(ai = a∗

i )× I(a∗

i < mi)+ I(ai = mi)

× I(a∗

i ≥ mi)],

where

µai|u,v = x̃iβ̃ +

σϵuci σϵvci

 σuuci σuvci
σvuci σvvci

−1

×


r∗

i − z̃iγ̃
d∗

i − w̃iθ̃


σϵϵci|u,v = σϵϵci −


σϵuci σϵvci

 σuuci σuvci
σvuci σvvci

−1

×


σuϵci
σvϵci


.

Therefore, if ai < mi, a∗

i = ai. If ai = mi, the latent log amount a∗

i
is sampled from a univariate truncated normal distribution:

a∗

i |Ξ−a∗i
,D ∼ T N [mi,∞)(µai|u,v, σϵϵci|u,v).

Step 6: Sampling the cutpoints δ
As has been well documented in the literature (e.g., Cowles,

1996 and Nandram and Chen, 1996), in samples of moderate
size, simulation of the cutpoints δ using standard Gibbs methods
that condition on the latent response can mix very poorly. For
this reason, blocking the cutpoints δ and latent data r∗ together
in a single step can greatly improve the mixing performance
of our posterior simulator. In what follows, therefore, we block
these together using a marginal-conditional decomposition, first
sampling the cutpoints δ.

Marginalized over r∗, the conditional posterior distribution of δ
is proportional to

p(δ|Ξ−δ,r∗ ,D) ∝ I(δ1 = −∞)I(δ2 = 0)I(0 < δ3 < δ4 < δ5 < 1)
× I(δ6 = 1)I(δ7 = ∞)

×

n
i=1

[Φri(δri+2)− Φri(δri+1)],

where Φri(·) denotes the cumulative distribution function of a
normal density with mean µri|ϵ,v and variance σuuci|ϵ,v where

µri|ϵ,v = z̃iγ̃ +

σuϵci σuvci


×


σϵϵci σϵvci
σvϵci σvvci

−1 
a∗

i − x̃iβ̃
d∗

i − w̃iθ̃


σuuci|ϵ,v = σuuci −


σuϵci σuvci


×


σϵϵci σϵvci
σvϵci σvvci

−1 
σϵuci
σvuci


.

As this does not correspond to any standard density, we employ
an M–H step to sample values from this conditional posterior.
Specifically, following Nandram and Chen (1996) and Li and Tobias
(2008), we generate candidate values for the cutpoint vector by
first sampling their differences q from a Dirichlet proposal density:

q∗
= (q∗

1, q
∗

2, q
∗

3, q
∗

4)

∼ Dirichlet(α1l1 + 1, α2l2 + 1, α3l3 + 1, α4l4 + 1)

where ∗ indicates a candidate draw, q∗

j ≡ δ∗

j+2 − δ∗

j+1, αj are tuning
parameters and lj =

n
i=1 I(ri = j) for j = 1, 2, 3, 4. We accept
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the candidate δ∗ with probability

min

1,


n

i=1

Φri(δ
∗

ri+2)− Φri(δ
∗

ri+1)

Φri(δ
Ď
ri+2)− Φri(δ

Ď
ri+1)

 4
j=1


qĎj
q∗

j

αj lj
where Ď indicates the last accepted draw from the M–H step. In
our application, we setαj = 0.1 ∀j, which leads to acceptance rates
approximately equal to 10%. Inefficiency factors for our cutpoint
parameters ranged from 27 to 29, with effective sample sizes
approximately equal to 3000.

Step 7: Sampling the latent renewals variable r∗

Eq. (15) reveals that the latent renewals r∗

i can be sampled
independently, i = 1, 2, . . . , n, from the following density, given
the values of the cutpoints δ just sampled:

r∗

i |Ξ−r∗i
,D ∼ T N (δri+1,δri+2)(µri|ϵ,v, σuuci|ϵ,v), i = 1, 2, . . . , n.

Step 8: Sampling the latent default d∗

Finally, each latent default value di is sampled independently
from the following univariate truncated normal distribution:

d∗

i |Ξ−d∗
i
,D ∼


T N (−∞,0](µdi|ϵ,u, σvvci|ϵ,u) if di = 0
T N (0,∞)(µdi|ϵ,u, σvvci|ϵ,u) if di = 1

where

µdi|ϵ,u = w̃iθ̃ +

σvϵci σvuci

 σϵϵci σϵuci
σuϵci σuuci

−1

×


a∗

i − x̃iβ̃
r∗

i − z̃iγ̃


σvvci|ϵ,u = σvvci −


σvϵci σvuci


×


σϵϵci σϵuci
σuϵci σuuci

−1 
σϵvci
σuvci


.
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